ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqimssi Unicode version

Theorem eqimssi 3198
Description: Infer subclass relationship from equality. (Contributed by NM, 6-Jan-2007.)
Hypothesis
Ref Expression
eqimssi.1  |-  A  =  B
Assertion
Ref Expression
eqimssi  |-  A  C_  B

Proof of Theorem eqimssi
StepHypRef Expression
1 ssid 3162 . 2  |-  A  C_  A
2 eqimssi.1 . 2  |-  A  =  B
31, 2sseqtri 3176 1  |-  A  C_  B
Colors of variables: wff set class
Syntax hints:    = wceq 1343    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129
This theorem is referenced by:  funi  5220  fpr  5667  elfzo1  10125  sumsplitdc  11373  isumlessdc  11437  nconstwlpolem0  13941
  Copyright terms: Public domain W3C validator