ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzo1 Unicode version

Theorem elfzo1 10121
Description: Membership in a half-open integer range based at 1. (Contributed by Thierry Arnoux, 14-Feb-2017.)
Assertion
Ref Expression
elfzo1  |-  ( N  e.  ( 1..^ M )  <->  ( N  e.  NN  /\  M  e.  NN  /\  N  < 
M ) )

Proof of Theorem elfzo1
StepHypRef Expression
1 fzossnn 10120 . . . 4  |-  ( 1..^ M )  C_  NN
21sseli 3137 . . 3  |-  ( N  e.  ( 1..^ M )  ->  N  e.  NN )
3 elfzouz2 10092 . . . 4  |-  ( N  e.  ( 1..^ M )  ->  M  e.  ( ZZ>= `  N )
)
4 eluznn 9534 . . . 4  |-  ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  ->  M  e.  NN )
52, 3, 4syl2anc 409 . . 3  |-  ( N  e.  ( 1..^ M )  ->  M  e.  NN )
6 elfzolt2 10087 . . 3  |-  ( N  e.  ( 1..^ M )  ->  N  <  M )
72, 5, 63jca 1167 . 2  |-  ( N  e.  ( 1..^ M )  ->  ( N  e.  NN  /\  M  e.  NN  /\  N  < 
M ) )
8 nnuz 9497 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
98eqimssi 3197 . . . . 5  |-  NN  C_  ( ZZ>= `  1 )
109sseli 3137 . . . 4  |-  ( N  e.  NN  ->  N  e.  ( ZZ>= `  1 )
)
11 nnz 9206 . . . 4  |-  ( M  e.  NN  ->  M  e.  ZZ )
12 id 19 . . . 4  |-  ( N  <  M  ->  N  <  M )
1310, 11, 123anim123i 1174 . . 3  |-  ( ( N  e.  NN  /\  M  e.  NN  /\  N  <  M )  ->  ( N  e.  ( ZZ>= ` 
1 )  /\  M  e.  ZZ  /\  N  < 
M ) )
14 elfzo2 10081 . . 3  |-  ( N  e.  ( 1..^ M )  <->  ( N  e.  ( ZZ>= `  1 )  /\  M  e.  ZZ  /\  N  <  M ) )
1513, 14sylibr 133 . 2  |-  ( ( N  e.  NN  /\  M  e.  NN  /\  N  <  M )  ->  N  e.  ( 1..^ M ) )
167, 15impbii 125 1  |-  ( N  e.  ( 1..^ M )  <->  ( N  e.  NN  /\  M  e.  NN  /\  N  < 
M ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    /\ w3a 968    e. wcel 2136   class class class wbr 3981   ` cfv 5187  (class class class)co 5841   1c1 7750    < clt 7929   NNcn 8853   ZZcz 9187   ZZ>=cuz 9462  ..^cfzo 10073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-addcom 7849  ax-addass 7851  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-0id 7857  ax-rnegex 7858  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-ltadd 7865
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-inn 8854  df-n0 9111  df-z 9188  df-uz 9463  df-fz 9941  df-fzo 10074
This theorem is referenced by:  modfzo0difsn  10326  modsumfzodifsn  10327  eulerthlema  12158  modprm0  12182  nconstwlpolemgt0  13902
  Copyright terms: Public domain W3C validator