ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fpr Unicode version

Theorem fpr 5740
Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
fpr.1  |-  A  e. 
_V
fpr.2  |-  B  e. 
_V
fpr.3  |-  C  e. 
_V
fpr.4  |-  D  e. 
_V
Assertion
Ref Expression
fpr  |-  ( A  =/=  B  ->  { <. A ,  C >. ,  <. B ,  D >. } : { A ,  B } --> { C ,  D }
)

Proof of Theorem fpr
StepHypRef Expression
1 fpr.1 . . . . . 6  |-  A  e. 
_V
2 fpr.2 . . . . . 6  |-  B  e. 
_V
3 fpr.3 . . . . . 6  |-  C  e. 
_V
4 fpr.4 . . . . . 6  |-  D  e. 
_V
51, 2, 3, 4funpr 5306 . . . . 5  |-  ( A  =/=  B  ->  Fun  {
<. A ,  C >. , 
<. B ,  D >. } )
63, 4dmprop 5140 . . . . 5  |-  dom  { <. A ,  C >. , 
<. B ,  D >. }  =  { A ,  B }
75, 6jctir 313 . . . 4  |-  ( A  =/=  B  ->  ( Fun  { <. A ,  C >. ,  <. B ,  D >. }  /\  dom  { <. A ,  C >. , 
<. B ,  D >. }  =  { A ,  B } ) )
8 df-fn 5257 . . . 4  |-  ( {
<. A ,  C >. , 
<. B ,  D >. }  Fn  { A ,  B }  <->  ( Fun  { <. A ,  C >. , 
<. B ,  D >. }  /\  dom  { <. A ,  C >. ,  <. B ,  D >. }  =  { A ,  B }
) )
97, 8sylibr 134 . . 3  |-  ( A  =/=  B  ->  { <. A ,  C >. ,  <. B ,  D >. }  Fn  { A ,  B }
)
10 df-pr 3625 . . . . . 6  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )
1110rneqi 4890 . . . . 5  |-  ran  { <. A ,  C >. , 
<. B ,  D >. }  =  ran  ( {
<. A ,  C >. }  u.  { <. B ,  D >. } )
12 rnun 5074 . . . . 5  |-  ran  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )  =  ( ran  { <. A ,  C >. }  u.  ran  { <. B ,  D >. } )
131rnsnop 5146 . . . . . . 7  |-  ran  { <. A ,  C >. }  =  { C }
142rnsnop 5146 . . . . . . 7  |-  ran  { <. B ,  D >. }  =  { D }
1513, 14uneq12i 3311 . . . . . 6  |-  ( ran 
{ <. A ,  C >. }  u.  ran  { <. B ,  D >. } )  =  ( { C }  u.  { D } )
16 df-pr 3625 . . . . . 6  |-  { C ,  D }  =  ( { C }  u.  { D } )
1715, 16eqtr4i 2217 . . . . 5  |-  ( ran 
{ <. A ,  C >. }  u.  ran  { <. B ,  D >. } )  =  { C ,  D }
1811, 12, 173eqtri 2218 . . . 4  |-  ran  { <. A ,  C >. , 
<. B ,  D >. }  =  { C ,  D }
1918eqimssi 3235 . . 3  |-  ran  { <. A ,  C >. , 
<. B ,  D >. } 
C_  { C ,  D }
209, 19jctir 313 . 2  |-  ( A  =/=  B  ->  ( { <. A ,  C >. ,  <. B ,  D >. }  Fn  { A ,  B }  /\  ran  {
<. A ,  C >. , 
<. B ,  D >. } 
C_  { C ,  D } ) )
21 df-f 5258 . 2  |-  ( {
<. A ,  C >. , 
<. B ,  D >. } : { A ,  B } --> { C ,  D }  <->  ( { <. A ,  C >. ,  <. B ,  D >. }  Fn  { A ,  B }  /\  ran  { <. A ,  C >. ,  <. B ,  D >. }  C_  { C ,  D } ) )
2220, 21sylibr 134 1  |-  ( A  =/=  B  ->  { <. A ,  C >. ,  <. B ,  D >. } : { A ,  B } --> { C ,  D }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    =/= wne 2364   _Vcvv 2760    u. cun 3151    C_ wss 3153   {csn 3618   {cpr 3619   <.cop 3621   dom cdm 4659   ran crn 4660   Fun wfun 5248    Fn wfn 5249   -->wf 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-fun 5256  df-fn 5257  df-f 5258
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator