ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fpr Unicode version

Theorem fpr 5768
Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
fpr.1  |-  A  e. 
_V
fpr.2  |-  B  e. 
_V
fpr.3  |-  C  e. 
_V
fpr.4  |-  D  e. 
_V
Assertion
Ref Expression
fpr  |-  ( A  =/=  B  ->  { <. A ,  C >. ,  <. B ,  D >. } : { A ,  B } --> { C ,  D }
)

Proof of Theorem fpr
StepHypRef Expression
1 fpr.1 . . . . . 6  |-  A  e. 
_V
2 fpr.2 . . . . . 6  |-  B  e. 
_V
3 fpr.3 . . . . . 6  |-  C  e. 
_V
4 fpr.4 . . . . . 6  |-  D  e. 
_V
51, 2, 3, 4funpr 5327 . . . . 5  |-  ( A  =/=  B  ->  Fun  {
<. A ,  C >. , 
<. B ,  D >. } )
63, 4dmprop 5158 . . . . 5  |-  dom  { <. A ,  C >. , 
<. B ,  D >. }  =  { A ,  B }
75, 6jctir 313 . . . 4  |-  ( A  =/=  B  ->  ( Fun  { <. A ,  C >. ,  <. B ,  D >. }  /\  dom  { <. A ,  C >. , 
<. B ,  D >. }  =  { A ,  B } ) )
8 df-fn 5275 . . . 4  |-  ( {
<. A ,  C >. , 
<. B ,  D >. }  Fn  { A ,  B }  <->  ( Fun  { <. A ,  C >. , 
<. B ,  D >. }  /\  dom  { <. A ,  C >. ,  <. B ,  D >. }  =  { A ,  B }
) )
97, 8sylibr 134 . . 3  |-  ( A  =/=  B  ->  { <. A ,  C >. ,  <. B ,  D >. }  Fn  { A ,  B }
)
10 df-pr 3640 . . . . . 6  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )
1110rneqi 4907 . . . . 5  |-  ran  { <. A ,  C >. , 
<. B ,  D >. }  =  ran  ( {
<. A ,  C >. }  u.  { <. B ,  D >. } )
12 rnun 5092 . . . . 5  |-  ran  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )  =  ( ran  { <. A ,  C >. }  u.  ran  { <. B ,  D >. } )
131rnsnop 5164 . . . . . . 7  |-  ran  { <. A ,  C >. }  =  { C }
142rnsnop 5164 . . . . . . 7  |-  ran  { <. B ,  D >. }  =  { D }
1513, 14uneq12i 3325 . . . . . 6  |-  ( ran 
{ <. A ,  C >. }  u.  ran  { <. B ,  D >. } )  =  ( { C }  u.  { D } )
16 df-pr 3640 . . . . . 6  |-  { C ,  D }  =  ( { C }  u.  { D } )
1715, 16eqtr4i 2229 . . . . 5  |-  ( ran 
{ <. A ,  C >. }  u.  ran  { <. B ,  D >. } )  =  { C ,  D }
1811, 12, 173eqtri 2230 . . . 4  |-  ran  { <. A ,  C >. , 
<. B ,  D >. }  =  { C ,  D }
1918eqimssi 3249 . . 3  |-  ran  { <. A ,  C >. , 
<. B ,  D >. } 
C_  { C ,  D }
209, 19jctir 313 . 2  |-  ( A  =/=  B  ->  ( { <. A ,  C >. ,  <. B ,  D >. }  Fn  { A ,  B }  /\  ran  {
<. A ,  C >. , 
<. B ,  D >. } 
C_  { C ,  D } ) )
21 df-f 5276 . 2  |-  ( {
<. A ,  C >. , 
<. B ,  D >. } : { A ,  B } --> { C ,  D }  <->  ( { <. A ,  C >. ,  <. B ,  D >. }  Fn  { A ,  B }  /\  ran  { <. A ,  C >. ,  <. B ,  D >. }  C_  { C ,  D } ) )
2220, 21sylibr 134 1  |-  ( A  =/=  B  ->  { <. A ,  C >. ,  <. B ,  D >. } : { A ,  B } --> { C ,  D }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176    =/= wne 2376   _Vcvv 2772    u. cun 3164    C_ wss 3166   {csn 3633   {cpr 3634   <.cop 3636   dom cdm 4676   ran crn 4677   Fun wfun 5266    Fn wfn 5267   -->wf 5268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-fun 5274  df-fn 5275  df-f 5276
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator