ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumlessdc Unicode version

Theorem isumlessdc 11258
Description: A finite sum of nonnegative numbers is less than or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumless.1  |-  Z  =  ( ZZ>= `  M )
isumless.2  |-  ( ph  ->  M  e.  ZZ )
isumless.3  |-  ( ph  ->  A  e.  Fin )
isumless.4  |-  ( ph  ->  A  C_  Z )
isumless.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
isumless.dc  |-  ( ph  ->  A. k  e.  Z DECID  k  e.  A )
isumless.6  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  RR )
isumless.7  |-  ( (
ph  /\  k  e.  Z )  ->  0  <_  B )
isumless.8  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
Assertion
Ref Expression
isumlessdc  |-  ( ph  -> 
sum_ k  e.  A  B  <_  sum_ k  e.  Z  B )
Distinct variable groups:    A, k    k, F    k, M    ph, k    k, Z
Allowed substitution hint:    B( k)

Proof of Theorem isumlessdc
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 isumless.4 . . 3  |-  ( ph  ->  A  C_  Z )
2 isumless.dc . . 3  |-  ( ph  ->  A. k  e.  Z DECID  k  e.  A )
31sselda 3092 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  k  e.  Z )
4 isumless.6 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  RR )
54recnd 7787 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
63, 5syldan 280 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
76ralrimiva 2503 . . 3  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
8 isumless.2 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
9 isumless.1 . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
109eqimssi 3148 . . . . . 6  |-  Z  C_  ( ZZ>= `  M )
1110a1i 9 . . . . 5  |-  ( ph  ->  Z  C_  ( ZZ>= `  M ) )
129eleq2i 2204 . . . . . . . . . 10  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
1312biimpri 132 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  Z )
1413orcd 722 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  e.  Z  \/  -.  k  e.  Z )
)
15 df-dc 820 . . . . . . . 8  |-  (DECID  k  e.  Z  <->  ( k  e.  Z  \/  -.  k  e.  Z ) )
1614, 15sylibr 133 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  -> DECID  k  e.  Z
)
1716rgen 2483 . . . . . 6  |-  A. k  e.  ( ZZ>= `  M )DECID  k  e.  Z
1817a1i 9 . . . . 5  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M )DECID  k  e.  Z )
198, 11, 183jca 1161 . . . 4  |-  ( ph  ->  ( M  e.  ZZ  /\  Z  C_  ( ZZ>= `  M )  /\  A. k  e.  ( ZZ>= `  M )DECID  k  e.  Z ) )
2019orcd 722 . . 3  |-  ( ph  ->  ( ( M  e.  ZZ  /\  Z  C_  ( ZZ>= `  M )  /\  A. k  e.  (
ZZ>= `  M )DECID  k  e.  Z )  \/  Z  e.  Fin ) )
211, 2, 7, 20isumss2 11155 . 2  |-  ( ph  -> 
sum_ k  e.  A  B  =  sum_ k  e.  Z  if ( k  e.  A ,  B ,  0 ) )
22 simpr 109 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  Z )
23 isumless.5 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
2423, 4eqeltrd 2214 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
2524adantr 274 . . . . . 6  |-  ( ( ( ph  /\  k  e.  Z )  /\  k  e.  A )  ->  ( F `  k )  e.  RR )
26 0red 7760 . . . . . 6  |-  ( ( ( ph  /\  k  e.  Z )  /\  -.  k  e.  A )  ->  0  e.  RR )
272r19.21bi 2518 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  -> DECID  k  e.  A
)
2825, 26, 27ifcldadc 3496 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  A ,  ( F `  k ) ,  0 )  e.  RR )
29 eleq1w 2198 . . . . . . 7  |-  ( j  =  k  ->  (
j  e.  A  <->  k  e.  A ) )
30 fveq2 5414 . . . . . . 7  |-  ( j  =  k  ->  ( F `  j )  =  ( F `  k ) )
3129, 30ifbieq1d 3489 . . . . . 6  |-  ( j  =  k  ->  if ( j  e.  A ,  ( F `  j ) ,  0 )  =  if ( k  e.  A , 
( F `  k
) ,  0 ) )
32 eqid 2137 . . . . . 6  |-  ( j  e.  Z  |->  if ( j  e.  A , 
( F `  j
) ,  0 ) )  =  ( j  e.  Z  |->  if ( j  e.  A , 
( F `  j
) ,  0 ) )
3331, 32fvmptg 5490 . . . . 5  |-  ( ( k  e.  Z  /\  if ( k  e.  A ,  ( F `  k ) ,  0 )  e.  RR )  ->  ( ( j  e.  Z  |->  if ( j  e.  A , 
( F `  j
) ,  0 ) ) `  k )  =  if ( k  e.  A ,  ( F `  k ) ,  0 ) )
3422, 28, 33syl2anc 408 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
( j  e.  Z  |->  if ( j  e.  A ,  ( F `
 j ) ,  0 ) ) `  k )  =  if ( k  e.  A ,  ( F `  k ) ,  0 ) )
3523ifeq1d 3484 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  A ,  ( F `  k ) ,  0 )  =  if ( k  e.  A ,  B ,  0 ) )
3634, 35eqtrd 2170 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( j  e.  Z  |->  if ( j  e.  A ,  ( F `
 j ) ,  0 ) ) `  k )  =  if ( k  e.  A ,  B ,  0 ) )
3735, 28eqeltrrd 2215 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  A ,  B ,  0 )  e.  RR )
384leidd 8269 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  B  <_  B )
39 isumless.7 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  0  <_  B )
40 breq1 3927 . . . . 5  |-  ( B  =  if ( k  e.  A ,  B ,  0 )  -> 
( B  <_  B  <->  if ( k  e.  A ,  B ,  0 )  <_  B ) )
41 breq1 3927 . . . . 5  |-  ( 0  =  if ( k  e.  A ,  B ,  0 )  -> 
( 0  <_  B  <->  if ( k  e.  A ,  B ,  0 )  <_  B ) )
4240, 41ifbothdc 3499 . . . 4  |-  ( ( B  <_  B  /\  0  <_  B  /\ DECID  k  e.  A )  ->  if ( k  e.  A ,  B ,  0 )  <_  B )
4338, 39, 27, 42syl3anc 1216 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  A ,  B ,  0 )  <_  B )
44 isumless.3 . . . 4  |-  ( ph  ->  A  e.  Fin )
4513, 27sylan2 284 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
469, 8, 44, 1, 45, 36, 6fsum3cvg3 11158 . . 3  |-  ( ph  ->  seq M (  +  ,  ( j  e.  Z  |->  if ( j  e.  A ,  ( F `  j ) ,  0 ) ) )  e.  dom  ~~>  )
47 isumless.8 . . 3  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
489, 8, 36, 37, 23, 4, 43, 46, 47isumle 11257 . 2  |-  ( ph  -> 
sum_ k  e.  Z  if ( k  e.  A ,  B ,  0 )  <_  sum_ k  e.  Z  B )
4921, 48eqbrtrd 3945 1  |-  ( ph  -> 
sum_ k  e.  A  B  <_  sum_ k  e.  Z  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 697  DECID wdc 819    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2414    C_ wss 3066   ifcif 3469   class class class wbr 3924    |-> cmpt 3984   dom cdm 4534   ` cfv 5118   Fincfn 6627   CCcc 7611   RRcr 7612   0cc0 7613    + caddc 7616    <_ cle 7794   ZZcz 9047   ZZ>=cuz 9319    seqcseq 10211    ~~> cli 11040   sum_csu 11115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-isom 5127  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-frec 6281  df-1o 6306  df-oadd 6310  df-er 6422  df-en 6628  df-dom 6629  df-fin 6630  df-sup 6864  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-fz 9784  df-fzo 9913  df-seqfrec 10212  df-exp 10286  df-ihash 10515  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-clim 11041  df-sumdc 11116
This theorem is referenced by:  mertenslemi1  11297
  Copyright terms: Public domain W3C validator