ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumlessdc Unicode version

Theorem isumlessdc 11397
Description: A finite sum of nonnegative numbers is less than or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumless.1  |-  Z  =  ( ZZ>= `  M )
isumless.2  |-  ( ph  ->  M  e.  ZZ )
isumless.3  |-  ( ph  ->  A  e.  Fin )
isumless.4  |-  ( ph  ->  A  C_  Z )
isumless.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
isumless.dc  |-  ( ph  ->  A. k  e.  Z DECID  k  e.  A )
isumless.6  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  RR )
isumless.7  |-  ( (
ph  /\  k  e.  Z )  ->  0  <_  B )
isumless.8  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
Assertion
Ref Expression
isumlessdc  |-  ( ph  -> 
sum_ k  e.  A  B  <_  sum_ k  e.  Z  B )
Distinct variable groups:    A, k    k, F    k, M    ph, k    k, Z
Allowed substitution hint:    B( k)

Proof of Theorem isumlessdc
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 isumless.4 . . 3  |-  ( ph  ->  A  C_  Z )
2 isumless.dc . . 3  |-  ( ph  ->  A. k  e.  Z DECID  k  e.  A )
31sselda 3128 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  k  e.  Z )
4 isumless.6 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  RR )
54recnd 7907 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
63, 5syldan 280 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
76ralrimiva 2530 . . 3  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
8 isumless.2 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
9 isumless.1 . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
109eqimssi 3184 . . . . . 6  |-  Z  C_  ( ZZ>= `  M )
1110a1i 9 . . . . 5  |-  ( ph  ->  Z  C_  ( ZZ>= `  M ) )
129eleq2i 2224 . . . . . . . . . 10  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
1312biimpri 132 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  Z )
1413orcd 723 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  e.  Z  \/  -.  k  e.  Z )
)
15 df-dc 821 . . . . . . . 8  |-  (DECID  k  e.  Z  <->  ( k  e.  Z  \/  -.  k  e.  Z ) )
1614, 15sylibr 133 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  -> DECID  k  e.  Z
)
1716rgen 2510 . . . . . 6  |-  A. k  e.  ( ZZ>= `  M )DECID  k  e.  Z
1817a1i 9 . . . . 5  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M )DECID  k  e.  Z )
198, 11, 183jca 1162 . . . 4  |-  ( ph  ->  ( M  e.  ZZ  /\  Z  C_  ( ZZ>= `  M )  /\  A. k  e.  ( ZZ>= `  M )DECID  k  e.  Z ) )
2019orcd 723 . . 3  |-  ( ph  ->  ( ( M  e.  ZZ  /\  Z  C_  ( ZZ>= `  M )  /\  A. k  e.  (
ZZ>= `  M )DECID  k  e.  Z )  \/  Z  e.  Fin ) )
211, 2, 7, 20isumss2 11294 . 2  |-  ( ph  -> 
sum_ k  e.  A  B  =  sum_ k  e.  Z  if ( k  e.  A ,  B ,  0 ) )
22 simpr 109 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  Z )
23 isumless.5 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
2423, 4eqeltrd 2234 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
2524adantr 274 . . . . . 6  |-  ( ( ( ph  /\  k  e.  Z )  /\  k  e.  A )  ->  ( F `  k )  e.  RR )
26 0red 7880 . . . . . 6  |-  ( ( ( ph  /\  k  e.  Z )  /\  -.  k  e.  A )  ->  0  e.  RR )
272r19.21bi 2545 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  -> DECID  k  e.  A
)
2825, 26, 27ifcldadc 3534 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  A ,  ( F `  k ) ,  0 )  e.  RR )
29 eleq1w 2218 . . . . . . 7  |-  ( j  =  k  ->  (
j  e.  A  <->  k  e.  A ) )
30 fveq2 5469 . . . . . . 7  |-  ( j  =  k  ->  ( F `  j )  =  ( F `  k ) )
3129, 30ifbieq1d 3527 . . . . . 6  |-  ( j  =  k  ->  if ( j  e.  A ,  ( F `  j ) ,  0 )  =  if ( k  e.  A , 
( F `  k
) ,  0 ) )
32 eqid 2157 . . . . . 6  |-  ( j  e.  Z  |->  if ( j  e.  A , 
( F `  j
) ,  0 ) )  =  ( j  e.  Z  |->  if ( j  e.  A , 
( F `  j
) ,  0 ) )
3331, 32fvmptg 5545 . . . . 5  |-  ( ( k  e.  Z  /\  if ( k  e.  A ,  ( F `  k ) ,  0 )  e.  RR )  ->  ( ( j  e.  Z  |->  if ( j  e.  A , 
( F `  j
) ,  0 ) ) `  k )  =  if ( k  e.  A ,  ( F `  k ) ,  0 ) )
3422, 28, 33syl2anc 409 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
( j  e.  Z  |->  if ( j  e.  A ,  ( F `
 j ) ,  0 ) ) `  k )  =  if ( k  e.  A ,  ( F `  k ) ,  0 ) )
3523ifeq1d 3522 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  A ,  ( F `  k ) ,  0 )  =  if ( k  e.  A ,  B ,  0 ) )
3634, 35eqtrd 2190 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( j  e.  Z  |->  if ( j  e.  A ,  ( F `
 j ) ,  0 ) ) `  k )  =  if ( k  e.  A ,  B ,  0 ) )
3735, 28eqeltrrd 2235 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  A ,  B ,  0 )  e.  RR )
384leidd 8390 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  B  <_  B )
39 isumless.7 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  0  <_  B )
40 breq1 3969 . . . . 5  |-  ( B  =  if ( k  e.  A ,  B ,  0 )  -> 
( B  <_  B  <->  if ( k  e.  A ,  B ,  0 )  <_  B ) )
41 breq1 3969 . . . . 5  |-  ( 0  =  if ( k  e.  A ,  B ,  0 )  -> 
( 0  <_  B  <->  if ( k  e.  A ,  B ,  0 )  <_  B ) )
4240, 41ifbothdc 3537 . . . 4  |-  ( ( B  <_  B  /\  0  <_  B  /\ DECID  k  e.  A )  ->  if ( k  e.  A ,  B ,  0 )  <_  B )
4338, 39, 27, 42syl3anc 1220 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  A ,  B ,  0 )  <_  B )
44 isumless.3 . . . 4  |-  ( ph  ->  A  e.  Fin )
4513, 27sylan2 284 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
469, 8, 44, 1, 45, 36, 6fsum3cvg3 11297 . . 3  |-  ( ph  ->  seq M (  +  ,  ( j  e.  Z  |->  if ( j  e.  A ,  ( F `  j ) ,  0 ) ) )  e.  dom  ~~>  )
47 isumless.8 . . 3  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
489, 8, 36, 37, 23, 4, 43, 46, 47isumle 11396 . 2  |-  ( ph  -> 
sum_ k  e.  Z  if ( k  e.  A ,  B ,  0 )  <_  sum_ k  e.  Z  B )
4921, 48eqbrtrd 3987 1  |-  ( ph  -> 
sum_ k  e.  A  B  <_  sum_ k  e.  Z  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 820    /\ w3a 963    = wceq 1335    e. wcel 2128   A.wral 2435    C_ wss 3102   ifcif 3505   class class class wbr 3966    |-> cmpt 4026   dom cdm 4587   ` cfv 5171   Fincfn 6686   CCcc 7731   RRcr 7732   0cc0 7733    + caddc 7736    <_ cle 7914   ZZcz 9168   ZZ>=cuz 9440    seqcseq 10348    ~~> cli 11179   sum_csu 11254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4080  ax-sep 4083  ax-nul 4091  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-iinf 4548  ax-cnex 7824  ax-resscn 7825  ax-1cn 7826  ax-1re 7827  ax-icn 7828  ax-addcl 7829  ax-addrcl 7830  ax-mulcl 7831  ax-mulrcl 7832  ax-addcom 7833  ax-mulcom 7834  ax-addass 7835  ax-mulass 7836  ax-distr 7837  ax-i2m1 7838  ax-0lt1 7839  ax-1rid 7840  ax-0id 7841  ax-rnegex 7842  ax-precex 7843  ax-cnre 7844  ax-pre-ltirr 7845  ax-pre-ltwlin 7846  ax-pre-lttrn 7847  ax-pre-apti 7848  ax-pre-ltadd 7849  ax-pre-mulgt0 7850  ax-pre-mulext 7851  ax-arch 7852  ax-caucvg 7853
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-int 3809  df-iun 3852  df-br 3967  df-opab 4027  df-mpt 4028  df-tr 4064  df-id 4254  df-po 4257  df-iso 4258  df-iord 4327  df-on 4329  df-ilim 4330  df-suc 4332  df-iom 4551  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-f1 5176  df-fo 5177  df-f1o 5178  df-fv 5179  df-isom 5180  df-riota 5781  df-ov 5828  df-oprab 5829  df-mpo 5830  df-1st 6089  df-2nd 6090  df-recs 6253  df-irdg 6318  df-frec 6339  df-1o 6364  df-oadd 6368  df-er 6481  df-en 6687  df-dom 6688  df-fin 6689  df-sup 6929  df-pnf 7915  df-mnf 7916  df-xr 7917  df-ltxr 7918  df-le 7919  df-sub 8049  df-neg 8050  df-reap 8451  df-ap 8458  df-div 8547  df-inn 8835  df-2 8893  df-3 8894  df-4 8895  df-n0 9092  df-z 9169  df-uz 9441  df-q 9530  df-rp 9562  df-fz 9914  df-fzo 10046  df-seqfrec 10349  df-exp 10423  df-ihash 10654  df-cj 10746  df-re 10747  df-im 10748  df-rsqrt 10902  df-abs 10903  df-clim 11180  df-sumdc 11255
This theorem is referenced by:  mertenslemi1  11436
  Copyright terms: Public domain W3C validator