ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumlessdc Unicode version

Theorem isumlessdc 11678
Description: A finite sum of nonnegative numbers is less than or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumless.1  |-  Z  =  ( ZZ>= `  M )
isumless.2  |-  ( ph  ->  M  e.  ZZ )
isumless.3  |-  ( ph  ->  A  e.  Fin )
isumless.4  |-  ( ph  ->  A  C_  Z )
isumless.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
isumless.dc  |-  ( ph  ->  A. k  e.  Z DECID  k  e.  A )
isumless.6  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  RR )
isumless.7  |-  ( (
ph  /\  k  e.  Z )  ->  0  <_  B )
isumless.8  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
Assertion
Ref Expression
isumlessdc  |-  ( ph  -> 
sum_ k  e.  A  B  <_  sum_ k  e.  Z  B )
Distinct variable groups:    A, k    k, F    k, M    ph, k    k, Z
Allowed substitution hint:    B( k)

Proof of Theorem isumlessdc
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 isumless.4 . . 3  |-  ( ph  ->  A  C_  Z )
2 isumless.dc . . 3  |-  ( ph  ->  A. k  e.  Z DECID  k  e.  A )
31sselda 3184 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  k  e.  Z )
4 isumless.6 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  RR )
54recnd 8072 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
63, 5syldan 282 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
76ralrimiva 2570 . . 3  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
8 isumless.2 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
9 isumless.1 . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
109eqimssi 3240 . . . . . 6  |-  Z  C_  ( ZZ>= `  M )
1110a1i 9 . . . . 5  |-  ( ph  ->  Z  C_  ( ZZ>= `  M ) )
129eleq2i 2263 . . . . . . . . . 10  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
1312biimpri 133 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  Z )
1413orcd 734 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  e.  Z  \/  -.  k  e.  Z )
)
15 df-dc 836 . . . . . . . 8  |-  (DECID  k  e.  Z  <->  ( k  e.  Z  \/  -.  k  e.  Z ) )
1614, 15sylibr 134 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  -> DECID  k  e.  Z
)
1716rgen 2550 . . . . . 6  |-  A. k  e.  ( ZZ>= `  M )DECID  k  e.  Z
1817a1i 9 . . . . 5  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M )DECID  k  e.  Z )
198, 11, 183jca 1179 . . . 4  |-  ( ph  ->  ( M  e.  ZZ  /\  Z  C_  ( ZZ>= `  M )  /\  A. k  e.  ( ZZ>= `  M )DECID  k  e.  Z ) )
2019orcd 734 . . 3  |-  ( ph  ->  ( ( M  e.  ZZ  /\  Z  C_  ( ZZ>= `  M )  /\  A. k  e.  (
ZZ>= `  M )DECID  k  e.  Z )  \/  Z  e.  Fin ) )
211, 2, 7, 20isumss2 11575 . 2  |-  ( ph  -> 
sum_ k  e.  A  B  =  sum_ k  e.  Z  if ( k  e.  A ,  B ,  0 ) )
22 simpr 110 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  Z )
23 isumless.5 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
2423, 4eqeltrd 2273 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
2524adantr 276 . . . . . 6  |-  ( ( ( ph  /\  k  e.  Z )  /\  k  e.  A )  ->  ( F `  k )  e.  RR )
26 0red 8044 . . . . . 6  |-  ( ( ( ph  /\  k  e.  Z )  /\  -.  k  e.  A )  ->  0  e.  RR )
272r19.21bi 2585 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  -> DECID  k  e.  A
)
2825, 26, 27ifcldadc 3591 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  A ,  ( F `  k ) ,  0 )  e.  RR )
29 eleq1w 2257 . . . . . . 7  |-  ( j  =  k  ->  (
j  e.  A  <->  k  e.  A ) )
30 fveq2 5561 . . . . . . 7  |-  ( j  =  k  ->  ( F `  j )  =  ( F `  k ) )
3129, 30ifbieq1d 3584 . . . . . 6  |-  ( j  =  k  ->  if ( j  e.  A ,  ( F `  j ) ,  0 )  =  if ( k  e.  A , 
( F `  k
) ,  0 ) )
32 eqid 2196 . . . . . 6  |-  ( j  e.  Z  |->  if ( j  e.  A , 
( F `  j
) ,  0 ) )  =  ( j  e.  Z  |->  if ( j  e.  A , 
( F `  j
) ,  0 ) )
3331, 32fvmptg 5640 . . . . 5  |-  ( ( k  e.  Z  /\  if ( k  e.  A ,  ( F `  k ) ,  0 )  e.  RR )  ->  ( ( j  e.  Z  |->  if ( j  e.  A , 
( F `  j
) ,  0 ) ) `  k )  =  if ( k  e.  A ,  ( F `  k ) ,  0 ) )
3422, 28, 33syl2anc 411 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
( j  e.  Z  |->  if ( j  e.  A ,  ( F `
 j ) ,  0 ) ) `  k )  =  if ( k  e.  A ,  ( F `  k ) ,  0 ) )
3523ifeq1d 3579 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  A ,  ( F `  k ) ,  0 )  =  if ( k  e.  A ,  B ,  0 ) )
3634, 35eqtrd 2229 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( j  e.  Z  |->  if ( j  e.  A ,  ( F `
 j ) ,  0 ) ) `  k )  =  if ( k  e.  A ,  B ,  0 ) )
3735, 28eqeltrrd 2274 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  A ,  B ,  0 )  e.  RR )
384leidd 8558 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  B  <_  B )
39 isumless.7 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  0  <_  B )
40 breq1 4037 . . . . 5  |-  ( B  =  if ( k  e.  A ,  B ,  0 )  -> 
( B  <_  B  <->  if ( k  e.  A ,  B ,  0 )  <_  B ) )
41 breq1 4037 . . . . 5  |-  ( 0  =  if ( k  e.  A ,  B ,  0 )  -> 
( 0  <_  B  <->  if ( k  e.  A ,  B ,  0 )  <_  B ) )
4240, 41ifbothdc 3595 . . . 4  |-  ( ( B  <_  B  /\  0  <_  B  /\ DECID  k  e.  A )  ->  if ( k  e.  A ,  B ,  0 )  <_  B )
4338, 39, 27, 42syl3anc 1249 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  A ,  B ,  0 )  <_  B )
44 isumless.3 . . . 4  |-  ( ph  ->  A  e.  Fin )
4513, 27sylan2 286 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
469, 8, 44, 1, 45, 36, 6fsum3cvg3 11578 . . 3  |-  ( ph  ->  seq M (  +  ,  ( j  e.  Z  |->  if ( j  e.  A ,  ( F `  j ) ,  0 ) ) )  e.  dom  ~~>  )
47 isumless.8 . . 3  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
489, 8, 36, 37, 23, 4, 43, 46, 47isumle 11677 . 2  |-  ( ph  -> 
sum_ k  e.  Z  if ( k  e.  A ,  B ,  0 )  <_  sum_ k  e.  Z  B )
4921, 48eqbrtrd 4056 1  |-  ( ph  -> 
sum_ k  e.  A  B  <_  sum_ k  e.  Z  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475    C_ wss 3157   ifcif 3562   class class class wbr 4034    |-> cmpt 4095   dom cdm 4664   ` cfv 5259   Fincfn 6808   CCcc 7894   RRcr 7895   0cc0 7896    + caddc 7899    <_ cle 8079   ZZcz 9343   ZZ>=cuz 9618    seqcseq 10556    ~~> cli 11460   sum_csu 11535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536
This theorem is referenced by:  mertenslemi1  11717
  Copyright terms: Public domain W3C validator