ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumlessdc Unicode version

Theorem isumlessdc 11437
Description: A finite sum of nonnegative numbers is less than or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumless.1  |-  Z  =  ( ZZ>= `  M )
isumless.2  |-  ( ph  ->  M  e.  ZZ )
isumless.3  |-  ( ph  ->  A  e.  Fin )
isumless.4  |-  ( ph  ->  A  C_  Z )
isumless.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
isumless.dc  |-  ( ph  ->  A. k  e.  Z DECID  k  e.  A )
isumless.6  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  RR )
isumless.7  |-  ( (
ph  /\  k  e.  Z )  ->  0  <_  B )
isumless.8  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
Assertion
Ref Expression
isumlessdc  |-  ( ph  -> 
sum_ k  e.  A  B  <_  sum_ k  e.  Z  B )
Distinct variable groups:    A, k    k, F    k, M    ph, k    k, Z
Allowed substitution hint:    B( k)

Proof of Theorem isumlessdc
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 isumless.4 . . 3  |-  ( ph  ->  A  C_  Z )
2 isumless.dc . . 3  |-  ( ph  ->  A. k  e.  Z DECID  k  e.  A )
31sselda 3142 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  k  e.  Z )
4 isumless.6 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  RR )
54recnd 7927 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
63, 5syldan 280 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
76ralrimiva 2539 . . 3  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
8 isumless.2 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
9 isumless.1 . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
109eqimssi 3198 . . . . . 6  |-  Z  C_  ( ZZ>= `  M )
1110a1i 9 . . . . 5  |-  ( ph  ->  Z  C_  ( ZZ>= `  M ) )
129eleq2i 2233 . . . . . . . . . 10  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
1312biimpri 132 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  Z )
1413orcd 723 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  e.  Z  \/  -.  k  e.  Z )
)
15 df-dc 825 . . . . . . . 8  |-  (DECID  k  e.  Z  <->  ( k  e.  Z  \/  -.  k  e.  Z ) )
1614, 15sylibr 133 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  -> DECID  k  e.  Z
)
1716rgen 2519 . . . . . 6  |-  A. k  e.  ( ZZ>= `  M )DECID  k  e.  Z
1817a1i 9 . . . . 5  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M )DECID  k  e.  Z )
198, 11, 183jca 1167 . . . 4  |-  ( ph  ->  ( M  e.  ZZ  /\  Z  C_  ( ZZ>= `  M )  /\  A. k  e.  ( ZZ>= `  M )DECID  k  e.  Z ) )
2019orcd 723 . . 3  |-  ( ph  ->  ( ( M  e.  ZZ  /\  Z  C_  ( ZZ>= `  M )  /\  A. k  e.  (
ZZ>= `  M )DECID  k  e.  Z )  \/  Z  e.  Fin ) )
211, 2, 7, 20isumss2 11334 . 2  |-  ( ph  -> 
sum_ k  e.  A  B  =  sum_ k  e.  Z  if ( k  e.  A ,  B ,  0 ) )
22 simpr 109 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  Z )
23 isumless.5 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
2423, 4eqeltrd 2243 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
2524adantr 274 . . . . . 6  |-  ( ( ( ph  /\  k  e.  Z )  /\  k  e.  A )  ->  ( F `  k )  e.  RR )
26 0red 7900 . . . . . 6  |-  ( ( ( ph  /\  k  e.  Z )  /\  -.  k  e.  A )  ->  0  e.  RR )
272r19.21bi 2554 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  -> DECID  k  e.  A
)
2825, 26, 27ifcldadc 3549 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  A ,  ( F `  k ) ,  0 )  e.  RR )
29 eleq1w 2227 . . . . . . 7  |-  ( j  =  k  ->  (
j  e.  A  <->  k  e.  A ) )
30 fveq2 5486 . . . . . . 7  |-  ( j  =  k  ->  ( F `  j )  =  ( F `  k ) )
3129, 30ifbieq1d 3542 . . . . . 6  |-  ( j  =  k  ->  if ( j  e.  A ,  ( F `  j ) ,  0 )  =  if ( k  e.  A , 
( F `  k
) ,  0 ) )
32 eqid 2165 . . . . . 6  |-  ( j  e.  Z  |->  if ( j  e.  A , 
( F `  j
) ,  0 ) )  =  ( j  e.  Z  |->  if ( j  e.  A , 
( F `  j
) ,  0 ) )
3331, 32fvmptg 5562 . . . . 5  |-  ( ( k  e.  Z  /\  if ( k  e.  A ,  ( F `  k ) ,  0 )  e.  RR )  ->  ( ( j  e.  Z  |->  if ( j  e.  A , 
( F `  j
) ,  0 ) ) `  k )  =  if ( k  e.  A ,  ( F `  k ) ,  0 ) )
3422, 28, 33syl2anc 409 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
( j  e.  Z  |->  if ( j  e.  A ,  ( F `
 j ) ,  0 ) ) `  k )  =  if ( k  e.  A ,  ( F `  k ) ,  0 ) )
3523ifeq1d 3537 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  A ,  ( F `  k ) ,  0 )  =  if ( k  e.  A ,  B ,  0 ) )
3634, 35eqtrd 2198 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( j  e.  Z  |->  if ( j  e.  A ,  ( F `
 j ) ,  0 ) ) `  k )  =  if ( k  e.  A ,  B ,  0 ) )
3735, 28eqeltrrd 2244 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  A ,  B ,  0 )  e.  RR )
384leidd 8412 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  B  <_  B )
39 isumless.7 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  0  <_  B )
40 breq1 3985 . . . . 5  |-  ( B  =  if ( k  e.  A ,  B ,  0 )  -> 
( B  <_  B  <->  if ( k  e.  A ,  B ,  0 )  <_  B ) )
41 breq1 3985 . . . . 5  |-  ( 0  =  if ( k  e.  A ,  B ,  0 )  -> 
( 0  <_  B  <->  if ( k  e.  A ,  B ,  0 )  <_  B ) )
4240, 41ifbothdc 3552 . . . 4  |-  ( ( B  <_  B  /\  0  <_  B  /\ DECID  k  e.  A )  ->  if ( k  e.  A ,  B ,  0 )  <_  B )
4338, 39, 27, 42syl3anc 1228 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  A ,  B ,  0 )  <_  B )
44 isumless.3 . . . 4  |-  ( ph  ->  A  e.  Fin )
4513, 27sylan2 284 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
469, 8, 44, 1, 45, 36, 6fsum3cvg3 11337 . . 3  |-  ( ph  ->  seq M (  +  ,  ( j  e.  Z  |->  if ( j  e.  A ,  ( F `  j ) ,  0 ) ) )  e.  dom  ~~>  )
47 isumless.8 . . 3  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
489, 8, 36, 37, 23, 4, 43, 46, 47isumle 11436 . 2  |-  ( ph  -> 
sum_ k  e.  Z  if ( k  e.  A ,  B ,  0 )  <_  sum_ k  e.  Z  B )
4921, 48eqbrtrd 4004 1  |-  ( ph  -> 
sum_ k  e.  A  B  <_  sum_ k  e.  Z  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 824    /\ w3a 968    = wceq 1343    e. wcel 2136   A.wral 2444    C_ wss 3116   ifcif 3520   class class class wbr 3982    |-> cmpt 4043   dom cdm 4604   ` cfv 5188   Fincfn 6706   CCcc 7751   RRcr 7752   0cc0 7753    + caddc 7756    <_ cle 7934   ZZcz 9191   ZZ>=cuz 9466    seqcseq 10380    ~~> cli 11219   sum_csu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-sup 6949  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by:  mertenslemi1  11476
  Copyright terms: Public domain W3C validator