![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqsb3 | GIF version |
Description: Substitution applied to an atomic wff (class version of equsb3 1874). (Contributed by Rodolfo Medina, 28-Apr-2010.) |
Ref | Expression |
---|---|
eqsb3 | ⊢ ([𝑥 / 𝑦]𝑦 = 𝐴 ↔ 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsb3lem 2191 | . . 3 ⊢ ([𝑤 / 𝑦]𝑦 = 𝐴 ↔ 𝑤 = 𝐴) | |
2 | 1 | sbbii 1696 | . 2 ⊢ ([𝑥 / 𝑤][𝑤 / 𝑦]𝑦 = 𝐴 ↔ [𝑥 / 𝑤]𝑤 = 𝐴) |
3 | nfv 1467 | . . 3 ⊢ Ⅎ𝑤 𝑦 = 𝐴 | |
4 | 3 | sbco2 1888 | . 2 ⊢ ([𝑥 / 𝑤][𝑤 / 𝑦]𝑦 = 𝐴 ↔ [𝑥 / 𝑦]𝑦 = 𝐴) |
5 | eqsb3lem 2191 | . 2 ⊢ ([𝑥 / 𝑤]𝑤 = 𝐴 ↔ 𝑥 = 𝐴) | |
6 | 2, 4, 5 | 3bitr3i 209 | 1 ⊢ ([𝑥 / 𝑦]𝑦 = 𝐴 ↔ 𝑥 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1290 [wsb 1693 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-nf 1396 df-sb 1694 df-cleq 2082 |
This theorem is referenced by: pm13.183 2757 eqsbc3 2881 |
Copyright terms: Public domain | W3C validator |