ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsb3 GIF version

Theorem eqsb3 2192
Description: Substitution applied to an atomic wff (class version of equsb3 1874). (Contributed by Rodolfo Medina, 28-Apr-2010.)
Assertion
Ref Expression
eqsb3 ([𝑥 / 𝑦]𝑦 = 𝐴𝑥 = 𝐴)
Distinct variable group:   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem eqsb3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqsb3lem 2191 . . 3 ([𝑤 / 𝑦]𝑦 = 𝐴𝑤 = 𝐴)
21sbbii 1696 . 2 ([𝑥 / 𝑤][𝑤 / 𝑦]𝑦 = 𝐴 ↔ [𝑥 / 𝑤]𝑤 = 𝐴)
3 nfv 1467 . . 3 𝑤 𝑦 = 𝐴
43sbco2 1888 . 2 ([𝑥 / 𝑤][𝑤 / 𝑦]𝑦 = 𝐴 ↔ [𝑥 / 𝑦]𝑦 = 𝐴)
5 eqsb3lem 2191 . 2 ([𝑥 / 𝑤]𝑤 = 𝐴𝑥 = 𝐴)
62, 4, 53bitr3i 209 1 ([𝑥 / 𝑦]𝑦 = 𝐴𝑥 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1290  [wsb 1693
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-nf 1396  df-sb 1694  df-cleq 2082
This theorem is referenced by:  pm13.183  2757  eqsbc3  2881
  Copyright terms: Public domain W3C validator