ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstrrdi Unicode version

Theorem eqsstrrdi 3277
Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
eqsstrrdi.1  |-  ( ph  ->  B  =  A )
eqsstrrdi.2  |-  B  C_  C
Assertion
Ref Expression
eqsstrrdi  |-  ( ph  ->  A  C_  C )

Proof of Theorem eqsstrrdi
StepHypRef Expression
1 eqsstrrdi.1 . . 3  |-  ( ph  ->  B  =  A )
21eqcomd 2235 . 2  |-  ( ph  ->  A  =  B )
3 eqsstrrdi.2 . 2  |-  B  C_  C
42, 3eqsstrdi 3276 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    C_ wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210
This theorem is referenced by:  ffvresb  5798  tposss  6392  sbthlemi5  7128  iooval2  10111  telfsumo  11977  structcnvcnv  13048  ressbasssd  13102  txss12  14940  txbasval  14941
  Copyright terms: Public domain W3C validator