Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqsstrrdi | Unicode version |
Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
eqsstrrdi.1 | |
eqsstrrdi.2 |
Ref | Expression |
---|---|
eqsstrrdi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrrdi.1 | . . 3 | |
2 | 1 | eqcomd 2171 | . 2 |
3 | eqsstrrdi.2 | . 2 | |
4 | 2, 3 | eqsstrdi 3194 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: ffvresb 5648 tposss 6214 sbthlemi5 6926 iooval2 9851 telfsumo 11407 structcnvcnv 12410 txss12 12906 txbasval 12907 |
Copyright terms: Public domain | W3C validator |