ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstrrdi Unicode version

Theorem eqsstrrdi 3195
Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
eqsstrrdi.1  |-  ( ph  ->  B  =  A )
eqsstrrdi.2  |-  B  C_  C
Assertion
Ref Expression
eqsstrrdi  |-  ( ph  ->  A  C_  C )

Proof of Theorem eqsstrrdi
StepHypRef Expression
1 eqsstrrdi.1 . . 3  |-  ( ph  ->  B  =  A )
21eqcomd 2171 . 2  |-  ( ph  ->  A  =  B )
3 eqsstrrdi.2 . 2  |-  B  C_  C
42, 3eqsstrdi 3194 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129
This theorem is referenced by:  ffvresb  5648  tposss  6214  sbthlemi5  6926  iooval2  9851  telfsumo  11407  structcnvcnv  12410  txss12  12906  txbasval  12907
  Copyright terms: Public domain W3C validator