ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstrrdi Unicode version

Theorem eqsstrrdi 3246
Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
eqsstrrdi.1  |-  ( ph  ->  B  =  A )
eqsstrrdi.2  |-  B  C_  C
Assertion
Ref Expression
eqsstrrdi  |-  ( ph  ->  A  C_  C )

Proof of Theorem eqsstrrdi
StepHypRef Expression
1 eqsstrrdi.1 . . 3  |-  ( ph  ->  B  =  A )
21eqcomd 2211 . 2  |-  ( ph  ->  A  =  B )
3 eqsstrrdi.2 . 2  |-  B  C_  C
42, 3eqsstrdi 3245 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179
This theorem is referenced by:  ffvresb  5743  tposss  6332  sbthlemi5  7063  iooval2  10037  telfsumo  11777  structcnvcnv  12848  ressbasssd  12901  txss12  14738  txbasval  14739
  Copyright terms: Public domain W3C validator