| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > telfsumo | Unicode version | ||
| Description: Sum of a telescoping series, using half-open intervals. (Contributed by Mario Carneiro, 2-May-2016.) |
| Ref | Expression |
|---|---|
| telfsumo.1 |
|
| telfsumo.2 |
|
| telfsumo.3 |
|
| telfsumo.4 |
|
| telfsumo.5 |
|
| telfsumo.6 |
|
| Ref | Expression |
|---|---|
| telfsumo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sum0 11894 |
. . . 4
| |
| 2 | telfsumo.3 |
. . . . . . . 8
| |
| 3 | 2 | eleq1d 2298 |
. . . . . . 7
|
| 4 | telfsumo.6 |
. . . . . . . 8
| |
| 5 | 4 | ralrimiva 2603 |
. . . . . . 7
|
| 6 | telfsumo.5 |
. . . . . . . 8
| |
| 7 | eluzfz1 10223 |
. . . . . . . 8
| |
| 8 | 6, 7 | syl 14 |
. . . . . . 7
|
| 9 | 3, 5, 8 | rspcdva 2912 |
. . . . . 6
|
| 10 | 9 | adantr 276 |
. . . . 5
|
| 11 | 10 | subidd 8441 |
. . . 4
|
| 12 | 1, 11 | eqtr4id 2281 |
. . 3
|
| 13 | oveq2 6008 |
. . . . . 6
| |
| 14 | 13 | adantl 277 |
. . . . 5
|
| 15 | fzo0 10362 |
. . . . 5
| |
| 16 | 14, 15 | eqtrdi 2278 |
. . . 4
|
| 17 | 16 | sumeq1d 11872 |
. . 3
|
| 18 | eqeq1 2236 |
. . . . . . . 8
| |
| 19 | telfsumo.4 |
. . . . . . . . 9
| |
| 20 | 19 | eqeq1d 2238 |
. . . . . . . 8
|
| 21 | 18, 20 | imbi12d 234 |
. . . . . . 7
|
| 22 | 21, 2 | vtoclg 2861 |
. . . . . 6
|
| 23 | 22 | imp 124 |
. . . . 5
|
| 24 | 6, 23 | sylan 283 |
. . . 4
|
| 25 | 24 | oveq2d 6016 |
. . 3
|
| 26 | 12, 17, 25 | 3eqtr4d 2272 |
. 2
|
| 27 | eluzel2 9723 |
. . . . . . 7
| |
| 28 | 6, 27 | syl 14 |
. . . . . 6
|
| 29 | eluzelz 9727 |
. . . . . . 7
| |
| 30 | 6, 29 | syl 14 |
. . . . . 6
|
| 31 | fzofig 10649 |
. . . . . 6
| |
| 32 | 28, 30, 31 | syl2anc 411 |
. . . . 5
|
| 33 | telfsumo.1 |
. . . . . . 7
| |
| 34 | 33 | eleq1d 2298 |
. . . . . 6
|
| 35 | 5 | adantr 276 |
. . . . . 6
|
| 36 | elfzofz 10355 |
. . . . . . 7
| |
| 37 | 36 | adantl 277 |
. . . . . 6
|
| 38 | 34, 35, 37 | rspcdva 2912 |
. . . . 5
|
| 39 | telfsumo.2 |
. . . . . . 7
| |
| 40 | 39 | eleq1d 2298 |
. . . . . 6
|
| 41 | fzofzp1 10428 |
. . . . . . 7
| |
| 42 | 41 | adantl 277 |
. . . . . 6
|
| 43 | 40, 35, 42 | rspcdva 2912 |
. . . . 5
|
| 44 | 32, 38, 43 | fsumsub 11958 |
. . . 4
|
| 45 | 44 | adantr 276 |
. . 3
|
| 46 | 33 | cbvsumv 11867 |
. . . . 5
|
| 47 | eluzp1m1 9742 |
. . . . . . . 8
| |
| 48 | 28, 47 | sylan 283 |
. . . . . . 7
|
| 49 | 30 | adantr 276 |
. . . . . . . . . . 11
|
| 50 | fzoval 10340 |
. . . . . . . . . . 11
| |
| 51 | 49, 50 | syl 14 |
. . . . . . . . . 10
|
| 52 | fzossfz 10358 |
. . . . . . . . . 10
| |
| 53 | 51, 52 | eqsstrrdi 3277 |
. . . . . . . . 9
|
| 54 | 53 | sselda 3224 |
. . . . . . . 8
|
| 55 | 4 | adantlr 477 |
. . . . . . . 8
|
| 56 | 54, 55 | syldan 282 |
. . . . . . 7
|
| 57 | 48, 56, 2 | fsum1p 11924 |
. . . . . 6
|
| 58 | 51 | sumeq1d 11872 |
. . . . . 6
|
| 59 | fzoval 10340 |
. . . . . . . . 9
| |
| 60 | 49, 59 | syl 14 |
. . . . . . . 8
|
| 61 | 60 | sumeq1d 11872 |
. . . . . . 7
|
| 62 | 61 | oveq2d 6016 |
. . . . . 6
|
| 63 | 57, 58, 62 | 3eqtr4d 2272 |
. . . . 5
|
| 64 | 46, 63 | eqtr3id 2276 |
. . . 4
|
| 65 | simpr 110 |
. . . . . 6
| |
| 66 | fzp1ss 10265 |
. . . . . . . . . 10
| |
| 67 | 28, 66 | syl 14 |
. . . . . . . . 9
|
| 68 | 67 | sselda 3224 |
. . . . . . . 8
|
| 69 | 68, 4 | syldan 282 |
. . . . . . 7
|
| 70 | 69 | adantlr 477 |
. . . . . 6
|
| 71 | 65, 70, 19 | fsumm1 11922 |
. . . . 5
|
| 72 | 1zzd 9469 |
. . . . . . . 8
| |
| 73 | 28 | peano2zd 9568 |
. . . . . . . 8
|
| 74 | 72, 73, 30, 69, 39 | fsumshftm 11951 |
. . . . . . 7
|
| 75 | 28 | zcnd 9566 |
. . . . . . . . . . 11
|
| 76 | ax-1cn 8088 |
. . . . . . . . . . 11
| |
| 77 | pncan 8348 |
. . . . . . . . . . 11
| |
| 78 | 75, 76, 77 | sylancl 413 |
. . . . . . . . . 10
|
| 79 | 78 | oveq1d 6015 |
. . . . . . . . 9
|
| 80 | 30, 50 | syl 14 |
. . . . . . . . 9
|
| 81 | 79, 80 | eqtr4d 2265 |
. . . . . . . 8
|
| 82 | 81 | sumeq1d 11872 |
. . . . . . 7
|
| 83 | 74, 82 | eqtrd 2262 |
. . . . . 6
|
| 84 | 83 | adantr 276 |
. . . . 5
|
| 85 | 30, 59 | syl 14 |
. . . . . . . . 9
|
| 86 | 85 | sumeq1d 11872 |
. . . . . . . 8
|
| 87 | 86 | oveq1d 6015 |
. . . . . . 7
|
| 88 | fzofig 10649 |
. . . . . . . . . 10
| |
| 89 | 73, 30, 88 | syl2anc 411 |
. . . . . . . . 9
|
| 90 | elfzofz 10355 |
. . . . . . . . . 10
| |
| 91 | 90, 69 | sylan2 286 |
. . . . . . . . 9
|
| 92 | 89, 91 | fsumcl 11906 |
. . . . . . . 8
|
| 93 | 19 | eleq1d 2298 |
. . . . . . . . 9
|
| 94 | eluzfz2 10224 |
. . . . . . . . . 10
| |
| 95 | 6, 94 | syl 14 |
. . . . . . . . 9
|
| 96 | 93, 5, 95 | rspcdva 2912 |
. . . . . . . 8
|
| 97 | 92, 96 | addcomd 8293 |
. . . . . . 7
|
| 98 | 87, 97 | eqtr3d 2264 |
. . . . . 6
|
| 99 | 98 | adantr 276 |
. . . . 5
|
| 100 | 71, 84, 99 | 3eqtr3d 2270 |
. . . 4
|
| 101 | 64, 100 | oveq12d 6018 |
. . 3
|
| 102 | 9, 96, 92 | pnpcan2d 8491 |
. . . 4
|
| 103 | 102 | adantr 276 |
. . 3
|
| 104 | 45, 101, 103 | 3eqtrd 2266 |
. 2
|
| 105 | uzp1 9752 |
. . 3
| |
| 106 | 6, 105 | syl 14 |
. 2
|
| 107 | 26, 104, 106 | mpjaodan 803 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-frec 6535 df-1o 6560 df-oadd 6564 df-er 6678 df-en 6886 df-dom 6887 df-fin 6888 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-fz 10201 df-fzo 10335 df-seqfrec 10665 df-exp 10756 df-ihash 10993 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-clim 11785 df-sumdc 11860 |
| This theorem is referenced by: telfsumo2 11973 telfsum 11974 geosergap 12012 |
| Copyright terms: Public domain | W3C validator |