ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  telfsumo Unicode version

Theorem telfsumo 11407
Description: Sum of a telescoping series, using half-open intervals. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
telfsumo.1  |-  ( k  =  j  ->  A  =  B )
telfsumo.2  |-  ( k  =  ( j  +  1 )  ->  A  =  C )
telfsumo.3  |-  ( k  =  M  ->  A  =  D )
telfsumo.4  |-  ( k  =  N  ->  A  =  E )
telfsumo.5  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
telfsumo.6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
Assertion
Ref Expression
telfsumo  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  -  C )  =  ( D  -  E ) )
Distinct variable groups:    A, j    B, k    C, k    j, k, M    j, N, k    ph, j, k    D, k   
k, E
Allowed substitution hints:    A( k)    B( j)    C( j)    D( j)    E( j)

Proof of Theorem telfsumo
StepHypRef Expression
1 sum0 11329 . . . 4  |-  sum_ j  e.  (/)  ( B  -  C )  =  0
2 telfsumo.3 . . . . . . . 8  |-  ( k  =  M  ->  A  =  D )
32eleq1d 2235 . . . . . . 7  |-  ( k  =  M  ->  ( A  e.  CC  <->  D  e.  CC ) )
4 telfsumo.6 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
54ralrimiva 2539 . . . . . . 7  |-  ( ph  ->  A. k  e.  ( M ... N ) A  e.  CC )
6 telfsumo.5 . . . . . . . 8  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
7 eluzfz1 9966 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
86, 7syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ( M ... N ) )
93, 5, 8rspcdva 2835 . . . . . 6  |-  ( ph  ->  D  e.  CC )
109adantr 274 . . . . 5  |-  ( (
ph  /\  N  =  M )  ->  D  e.  CC )
1110subidd 8197 . . . 4  |-  ( (
ph  /\  N  =  M )  ->  ( D  -  D )  =  0 )
121, 11eqtr4id 2218 . . 3  |-  ( (
ph  /\  N  =  M )  ->  sum_ j  e.  (/)  ( B  -  C )  =  ( D  -  D ) )
13 oveq2 5850 . . . . . 6  |-  ( N  =  M  ->  ( M..^ N )  =  ( M..^ M ) )
1413adantl 275 . . . . 5  |-  ( (
ph  /\  N  =  M )  ->  ( M..^ N )  =  ( M..^ M ) )
15 fzo0 10103 . . . . 5  |-  ( M..^ M )  =  (/)
1614, 15eqtrdi 2215 . . . 4  |-  ( (
ph  /\  N  =  M )  ->  ( M..^ N )  =  (/) )
1716sumeq1d 11307 . . 3  |-  ( (
ph  /\  N  =  M )  ->  sum_ j  e.  ( M..^ N ) ( B  -  C
)  =  sum_ j  e.  (/)  ( B  -  C ) )
18 eqeq1 2172 . . . . . . . 8  |-  ( k  =  N  ->  (
k  =  M  <->  N  =  M ) )
19 telfsumo.4 . . . . . . . . 9  |-  ( k  =  N  ->  A  =  E )
2019eqeq1d 2174 . . . . . . . 8  |-  ( k  =  N  ->  ( A  =  D  <->  E  =  D ) )
2118, 20imbi12d 233 . . . . . . 7  |-  ( k  =  N  ->  (
( k  =  M  ->  A  =  D )  <->  ( N  =  M  ->  E  =  D ) ) )
2221, 2vtoclg 2786 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  ->  E  =  D ) )
2322imp 123 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  E  =  D )
246, 23sylan 281 . . . 4  |-  ( (
ph  /\  N  =  M )  ->  E  =  D )
2524oveq2d 5858 . . 3  |-  ( (
ph  /\  N  =  M )  ->  ( D  -  E )  =  ( D  -  D ) )
2612, 17, 253eqtr4d 2208 . 2  |-  ( (
ph  /\  N  =  M )  ->  sum_ j  e.  ( M..^ N ) ( B  -  C
)  =  ( D  -  E ) )
27 eluzel2 9471 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
286, 27syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
29 eluzelz 9475 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
306, 29syl 14 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
31 fzofig 10367 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M..^ N )  e.  Fin )
3228, 30, 31syl2anc 409 . . . . 5  |-  ( ph  ->  ( M..^ N )  e.  Fin )
33 telfsumo.1 . . . . . . 7  |-  ( k  =  j  ->  A  =  B )
3433eleq1d 2235 . . . . . 6  |-  ( k  =  j  ->  ( A  e.  CC  <->  B  e.  CC ) )
355adantr 274 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  A. k  e.  ( M ... N ) A  e.  CC )
36 elfzofz 10097 . . . . . . 7  |-  ( j  e.  ( M..^ N
)  ->  j  e.  ( M ... N ) )
3736adantl 275 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  j  e.  ( M ... N ) )
3834, 35, 37rspcdva 2835 . . . . 5  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  B  e.  CC )
39 telfsumo.2 . . . . . . 7  |-  ( k  =  ( j  +  1 )  ->  A  =  C )
4039eleq1d 2235 . . . . . 6  |-  ( k  =  ( j  +  1 )  ->  ( A  e.  CC  <->  C  e.  CC ) )
41 fzofzp1 10162 . . . . . . 7  |-  ( j  e.  ( M..^ N
)  ->  ( j  +  1 )  e.  ( M ... N
) )
4241adantl 275 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( j  +  1 )  e.  ( M ... N ) )
4340, 35, 42rspcdva 2835 . . . . 5  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  C  e.  CC )
4432, 38, 43fsumsub 11393 . . . 4  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  -  C )  =  ( sum_ j  e.  ( M..^ N ) B  -  sum_ j  e.  ( M..^ N ) C ) )
4544adantr 274 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( B  -  C
)  =  ( sum_ j  e.  ( M..^ N ) B  -  sum_ j  e.  ( M..^ N ) C ) )
4633cbvsumv 11302 . . . . 5  |-  sum_ k  e.  ( M..^ N ) A  =  sum_ j  e.  ( M..^ N ) B
47 eluzp1m1 9489 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  M ) )
4828, 47sylan 281 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  M )
)
4930adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  N  e.  ZZ )
50 fzoval 10083 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  ( M..^ N )  =  ( M ... ( N  -  1 ) ) )
5149, 50syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M..^ N )  =  ( M ... ( N  -  1 ) ) )
52 fzossfz 10100 . . . . . . . . . 10  |-  ( M..^ N )  C_  ( M ... N )
5351, 52eqsstrrdi 3195 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M ... ( N  -  1 ) )  C_  ( M ... N ) )
5453sselda 3142 . . . . . . . 8  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  k  e.  ( M ... N
) )
554adantlr 469 . . . . . . . 8  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( M ... N
) )  ->  A  e.  CC )
5654, 55syldan 280 . . . . . . 7  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  A  e.  CC )
5748, 56, 2fsum1p 11359 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( M ... ( N  -  1 ) ) A  =  ( D  +  sum_ k  e.  ( ( M  + 
1 ) ... ( N  -  1 ) ) A ) )
5851sumeq1d 11307 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( M..^ N ) A  =  sum_ k  e.  ( M ... ( N  -  1 ) ) A )
59 fzoval 10083 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
( M  +  1 )..^ N )  =  ( ( M  + 
1 ) ... ( N  -  1 ) ) )
6049, 59syl 14 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( M  +  1 )..^ N )  =  ( ( M  +  1 ) ... ( N  -  1 ) ) )
6160sumeq1d 11307 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( ( M  + 
1 )..^ N ) A  =  sum_ k  e.  ( ( M  + 
1 ) ... ( N  -  1 ) ) A )
6261oveq2d 5858 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( D  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A )  =  ( D  +  sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) A ) )
6357, 58, 623eqtr4d 2208 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( M..^ N ) A  =  ( D  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
6446, 63eqtr3id 2213 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) B  =  ( D  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
65 simpr 109 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) )
66 fzp1ss 10008 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  (
( M  +  1 ) ... N ) 
C_  ( M ... N ) )
6728, 66syl 14 . . . . . . . . 9  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  C_  ( M ... N ) )
6867sselda 3142 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  k  e.  ( M ... N
) )
6968, 4syldan 280 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  CC )
7069adantlr 469 . . . . . 6  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  CC )
7165, 70, 19fsumm1 11357 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( ( M  + 
1 ) ... N
) A  =  (
sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) A  +  E ) )
72 1zzd 9218 . . . . . . . 8  |-  ( ph  ->  1  e.  ZZ )
7328peano2zd 9316 . . . . . . . 8  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
7472, 73, 30, 69, 39fsumshftm 11386 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) A  =  sum_ j  e.  ( ( ( M  +  1 )  - 
1 ) ... ( N  -  1 ) ) C )
7528zcnd 9314 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  CC )
76 ax-1cn 7846 . . . . . . . . . . 11  |-  1  e.  CC
77 pncan 8104 . . . . . . . . . . 11  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  + 
1 )  -  1 )  =  M )
7875, 76, 77sylancl 410 . . . . . . . . . 10  |-  ( ph  ->  ( ( M  + 
1 )  -  1 )  =  M )
7978oveq1d 5857 . . . . . . . . 9  |-  ( ph  ->  ( ( ( M  +  1 )  - 
1 ) ... ( N  -  1 ) )  =  ( M ... ( N  - 
1 ) ) )
8030, 50syl 14 . . . . . . . . 9  |-  ( ph  ->  ( M..^ N )  =  ( M ... ( N  -  1
) ) )
8179, 80eqtr4d 2201 . . . . . . . 8  |-  ( ph  ->  ( ( ( M  +  1 )  - 
1 ) ... ( N  -  1 ) )  =  ( M..^ N ) )
8281sumeq1d 11307 . . . . . . 7  |-  ( ph  -> 
sum_ j  e.  ( ( ( M  + 
1 )  -  1 ) ... ( N  -  1 ) ) C  =  sum_ j  e.  ( M..^ N ) C )
8374, 82eqtrd 2198 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) A  =  sum_ j  e.  ( M..^ N ) C )
8483adantr 274 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( ( M  + 
1 ) ... N
) A  =  sum_ j  e.  ( M..^ N ) C )
8530, 59syl 14 . . . . . . . . 9  |-  ( ph  ->  ( ( M  + 
1 )..^ N )  =  ( ( M  +  1 ) ... ( N  -  1 ) ) )
8685sumeq1d 11307 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 )..^ N ) A  =  sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) A )
8786oveq1d 5857 . . . . . . 7  |-  ( ph  ->  ( sum_ k  e.  ( ( M  +  1 )..^ N ) A  +  E )  =  ( sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) A  +  E ) )
88 fzofig 10367 . . . . . . . . . 10  |-  ( ( ( M  +  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  + 
1 )..^ N )  e.  Fin )
8973, 30, 88syl2anc 409 . . . . . . . . 9  |-  ( ph  ->  ( ( M  + 
1 )..^ N )  e.  Fin )
90 elfzofz 10097 . . . . . . . . . 10  |-  ( k  e.  ( ( M  +  1 )..^ N
)  ->  k  e.  ( ( M  + 
1 ) ... N
) )
9190, 69sylan2 284 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 )..^ N ) )  ->  A  e.  CC )
9289, 91fsumcl 11341 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 )..^ N ) A  e.  CC )
9319eleq1d 2235 . . . . . . . . 9  |-  ( k  =  N  ->  ( A  e.  CC  <->  E  e.  CC ) )
94 eluzfz2 9967 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
956, 94syl 14 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( M ... N ) )
9693, 5, 95rspcdva 2835 . . . . . . . 8  |-  ( ph  ->  E  e.  CC )
9792, 96addcomd 8049 . . . . . . 7  |-  ( ph  ->  ( sum_ k  e.  ( ( M  +  1 )..^ N ) A  +  E )  =  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
9887, 97eqtr3d 2200 . . . . . 6  |-  ( ph  ->  ( sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) A  +  E )  =  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
9998adantr 274 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ k  e.  ( ( M  +  1 ) ... ( N  - 
1 ) ) A  +  E )  =  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
10071, 84, 993eqtr3d 2206 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) C  =  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
10164, 100oveq12d 5860 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ j  e.  ( M..^ N ) B  -  sum_ j  e.  ( M..^ N ) C )  =  ( ( D  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A )  -  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) ) )
1029, 96, 92pnpcan2d 8247 . . . 4  |-  ( ph  ->  ( ( D  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A )  -  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )  =  ( D  -  E ) )
103102adantr 274 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( D  +  sum_ k  e.  ( ( M  + 
1 )..^ N ) A )  -  ( E  +  sum_ k  e.  ( ( M  + 
1 )..^ N ) A ) )  =  ( D  -  E
) )
10445, 101, 1033eqtrd 2202 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( B  -  C
)  =  ( D  -  E ) )
105 uzp1 9499 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  \/  N  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
1066, 105syl 14 . 2  |-  ( ph  ->  ( N  =  M  \/  N  e.  (
ZZ>= `  ( M  + 
1 ) ) ) )
10726, 104, 106mpjaodan 788 1  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  -  C )  =  ( D  -  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1343    e. wcel 2136   A.wral 2444    C_ wss 3116   (/)c0 3409   ` cfv 5188  (class class class)co 5842   Fincfn 6706   CCcc 7751   0cc0 7753   1c1 7754    + caddc 7756    - cmin 8069   ZZcz 9191   ZZ>=cuz 9466   ...cfz 9944  ..^cfzo 10077   sum_csu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by:  telfsumo2  11408  telfsum  11409  geosergap  11447
  Copyright terms: Public domain W3C validator