ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  telfsumo Unicode version

Theorem telfsumo 11609
Description: Sum of a telescoping series, using half-open intervals. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
telfsumo.1  |-  ( k  =  j  ->  A  =  B )
telfsumo.2  |-  ( k  =  ( j  +  1 )  ->  A  =  C )
telfsumo.3  |-  ( k  =  M  ->  A  =  D )
telfsumo.4  |-  ( k  =  N  ->  A  =  E )
telfsumo.5  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
telfsumo.6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
Assertion
Ref Expression
telfsumo  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  -  C )  =  ( D  -  E ) )
Distinct variable groups:    A, j    B, k    C, k    j, k, M    j, N, k    ph, j, k    D, k   
k, E
Allowed substitution hints:    A( k)    B( j)    C( j)    D( j)    E( j)

Proof of Theorem telfsumo
StepHypRef Expression
1 sum0 11531 . . . 4  |-  sum_ j  e.  (/)  ( B  -  C )  =  0
2 telfsumo.3 . . . . . . . 8  |-  ( k  =  M  ->  A  =  D )
32eleq1d 2262 . . . . . . 7  |-  ( k  =  M  ->  ( A  e.  CC  <->  D  e.  CC ) )
4 telfsumo.6 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
54ralrimiva 2567 . . . . . . 7  |-  ( ph  ->  A. k  e.  ( M ... N ) A  e.  CC )
6 telfsumo.5 . . . . . . . 8  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
7 eluzfz1 10097 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
86, 7syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ( M ... N ) )
93, 5, 8rspcdva 2869 . . . . . 6  |-  ( ph  ->  D  e.  CC )
109adantr 276 . . . . 5  |-  ( (
ph  /\  N  =  M )  ->  D  e.  CC )
1110subidd 8318 . . . 4  |-  ( (
ph  /\  N  =  M )  ->  ( D  -  D )  =  0 )
121, 11eqtr4id 2245 . . 3  |-  ( (
ph  /\  N  =  M )  ->  sum_ j  e.  (/)  ( B  -  C )  =  ( D  -  D ) )
13 oveq2 5926 . . . . . 6  |-  ( N  =  M  ->  ( M..^ N )  =  ( M..^ M ) )
1413adantl 277 . . . . 5  |-  ( (
ph  /\  N  =  M )  ->  ( M..^ N )  =  ( M..^ M ) )
15 fzo0 10235 . . . . 5  |-  ( M..^ M )  =  (/)
1614, 15eqtrdi 2242 . . . 4  |-  ( (
ph  /\  N  =  M )  ->  ( M..^ N )  =  (/) )
1716sumeq1d 11509 . . 3  |-  ( (
ph  /\  N  =  M )  ->  sum_ j  e.  ( M..^ N ) ( B  -  C
)  =  sum_ j  e.  (/)  ( B  -  C ) )
18 eqeq1 2200 . . . . . . . 8  |-  ( k  =  N  ->  (
k  =  M  <->  N  =  M ) )
19 telfsumo.4 . . . . . . . . 9  |-  ( k  =  N  ->  A  =  E )
2019eqeq1d 2202 . . . . . . . 8  |-  ( k  =  N  ->  ( A  =  D  <->  E  =  D ) )
2118, 20imbi12d 234 . . . . . . 7  |-  ( k  =  N  ->  (
( k  =  M  ->  A  =  D )  <->  ( N  =  M  ->  E  =  D ) ) )
2221, 2vtoclg 2820 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  ->  E  =  D ) )
2322imp 124 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  E  =  D )
246, 23sylan 283 . . . 4  |-  ( (
ph  /\  N  =  M )  ->  E  =  D )
2524oveq2d 5934 . . 3  |-  ( (
ph  /\  N  =  M )  ->  ( D  -  E )  =  ( D  -  D ) )
2612, 17, 253eqtr4d 2236 . 2  |-  ( (
ph  /\  N  =  M )  ->  sum_ j  e.  ( M..^ N ) ( B  -  C
)  =  ( D  -  E ) )
27 eluzel2 9597 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
286, 27syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
29 eluzelz 9601 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
306, 29syl 14 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
31 fzofig 10503 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M..^ N )  e.  Fin )
3228, 30, 31syl2anc 411 . . . . 5  |-  ( ph  ->  ( M..^ N )  e.  Fin )
33 telfsumo.1 . . . . . . 7  |-  ( k  =  j  ->  A  =  B )
3433eleq1d 2262 . . . . . 6  |-  ( k  =  j  ->  ( A  e.  CC  <->  B  e.  CC ) )
355adantr 276 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  A. k  e.  ( M ... N ) A  e.  CC )
36 elfzofz 10229 . . . . . . 7  |-  ( j  e.  ( M..^ N
)  ->  j  e.  ( M ... N ) )
3736adantl 277 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  j  e.  ( M ... N ) )
3834, 35, 37rspcdva 2869 . . . . 5  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  B  e.  CC )
39 telfsumo.2 . . . . . . 7  |-  ( k  =  ( j  +  1 )  ->  A  =  C )
4039eleq1d 2262 . . . . . 6  |-  ( k  =  ( j  +  1 )  ->  ( A  e.  CC  <->  C  e.  CC ) )
41 fzofzp1 10294 . . . . . . 7  |-  ( j  e.  ( M..^ N
)  ->  ( j  +  1 )  e.  ( M ... N
) )
4241adantl 277 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( j  +  1 )  e.  ( M ... N ) )
4340, 35, 42rspcdva 2869 . . . . 5  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  C  e.  CC )
4432, 38, 43fsumsub 11595 . . . 4  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  -  C )  =  ( sum_ j  e.  ( M..^ N ) B  -  sum_ j  e.  ( M..^ N ) C ) )
4544adantr 276 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( B  -  C
)  =  ( sum_ j  e.  ( M..^ N ) B  -  sum_ j  e.  ( M..^ N ) C ) )
4633cbvsumv 11504 . . . . 5  |-  sum_ k  e.  ( M..^ N ) A  =  sum_ j  e.  ( M..^ N ) B
47 eluzp1m1 9616 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  M ) )
4828, 47sylan 283 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  M )
)
4930adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  N  e.  ZZ )
50 fzoval 10214 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  ( M..^ N )  =  ( M ... ( N  -  1 ) ) )
5149, 50syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M..^ N )  =  ( M ... ( N  -  1 ) ) )
52 fzossfz 10232 . . . . . . . . . 10  |-  ( M..^ N )  C_  ( M ... N )
5351, 52eqsstrrdi 3232 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M ... ( N  -  1 ) )  C_  ( M ... N ) )
5453sselda 3179 . . . . . . . 8  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  k  e.  ( M ... N
) )
554adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( M ... N
) )  ->  A  e.  CC )
5654, 55syldan 282 . . . . . . 7  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  A  e.  CC )
5748, 56, 2fsum1p 11561 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( M ... ( N  -  1 ) ) A  =  ( D  +  sum_ k  e.  ( ( M  + 
1 ) ... ( N  -  1 ) ) A ) )
5851sumeq1d 11509 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( M..^ N ) A  =  sum_ k  e.  ( M ... ( N  -  1 ) ) A )
59 fzoval 10214 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
( M  +  1 )..^ N )  =  ( ( M  + 
1 ) ... ( N  -  1 ) ) )
6049, 59syl 14 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( M  +  1 )..^ N )  =  ( ( M  +  1 ) ... ( N  -  1 ) ) )
6160sumeq1d 11509 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( ( M  + 
1 )..^ N ) A  =  sum_ k  e.  ( ( M  + 
1 ) ... ( N  -  1 ) ) A )
6261oveq2d 5934 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( D  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A )  =  ( D  +  sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) A ) )
6357, 58, 623eqtr4d 2236 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( M..^ N ) A  =  ( D  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
6446, 63eqtr3id 2240 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) B  =  ( D  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
65 simpr 110 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) )
66 fzp1ss 10139 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  (
( M  +  1 ) ... N ) 
C_  ( M ... N ) )
6728, 66syl 14 . . . . . . . . 9  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  C_  ( M ... N ) )
6867sselda 3179 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  k  e.  ( M ... N
) )
6968, 4syldan 282 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  CC )
7069adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  CC )
7165, 70, 19fsumm1 11559 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( ( M  + 
1 ) ... N
) A  =  (
sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) A  +  E ) )
72 1zzd 9344 . . . . . . . 8  |-  ( ph  ->  1  e.  ZZ )
7328peano2zd 9442 . . . . . . . 8  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
7472, 73, 30, 69, 39fsumshftm 11588 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) A  =  sum_ j  e.  ( ( ( M  +  1 )  - 
1 ) ... ( N  -  1 ) ) C )
7528zcnd 9440 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  CC )
76 ax-1cn 7965 . . . . . . . . . . 11  |-  1  e.  CC
77 pncan 8225 . . . . . . . . . . 11  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  + 
1 )  -  1 )  =  M )
7875, 76, 77sylancl 413 . . . . . . . . . 10  |-  ( ph  ->  ( ( M  + 
1 )  -  1 )  =  M )
7978oveq1d 5933 . . . . . . . . 9  |-  ( ph  ->  ( ( ( M  +  1 )  - 
1 ) ... ( N  -  1 ) )  =  ( M ... ( N  - 
1 ) ) )
8030, 50syl 14 . . . . . . . . 9  |-  ( ph  ->  ( M..^ N )  =  ( M ... ( N  -  1
) ) )
8179, 80eqtr4d 2229 . . . . . . . 8  |-  ( ph  ->  ( ( ( M  +  1 )  - 
1 ) ... ( N  -  1 ) )  =  ( M..^ N ) )
8281sumeq1d 11509 . . . . . . 7  |-  ( ph  -> 
sum_ j  e.  ( ( ( M  + 
1 )  -  1 ) ... ( N  -  1 ) ) C  =  sum_ j  e.  ( M..^ N ) C )
8374, 82eqtrd 2226 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) A  =  sum_ j  e.  ( M..^ N ) C )
8483adantr 276 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( ( M  + 
1 ) ... N
) A  =  sum_ j  e.  ( M..^ N ) C )
8530, 59syl 14 . . . . . . . . 9  |-  ( ph  ->  ( ( M  + 
1 )..^ N )  =  ( ( M  +  1 ) ... ( N  -  1 ) ) )
8685sumeq1d 11509 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 )..^ N ) A  =  sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) A )
8786oveq1d 5933 . . . . . . 7  |-  ( ph  ->  ( sum_ k  e.  ( ( M  +  1 )..^ N ) A  +  E )  =  ( sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) A  +  E ) )
88 fzofig 10503 . . . . . . . . . 10  |-  ( ( ( M  +  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  + 
1 )..^ N )  e.  Fin )
8973, 30, 88syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( ( M  + 
1 )..^ N )  e.  Fin )
90 elfzofz 10229 . . . . . . . . . 10  |-  ( k  e.  ( ( M  +  1 )..^ N
)  ->  k  e.  ( ( M  + 
1 ) ... N
) )
9190, 69sylan2 286 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 )..^ N ) )  ->  A  e.  CC )
9289, 91fsumcl 11543 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 )..^ N ) A  e.  CC )
9319eleq1d 2262 . . . . . . . . 9  |-  ( k  =  N  ->  ( A  e.  CC  <->  E  e.  CC ) )
94 eluzfz2 10098 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
956, 94syl 14 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( M ... N ) )
9693, 5, 95rspcdva 2869 . . . . . . . 8  |-  ( ph  ->  E  e.  CC )
9792, 96addcomd 8170 . . . . . . 7  |-  ( ph  ->  ( sum_ k  e.  ( ( M  +  1 )..^ N ) A  +  E )  =  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
9887, 97eqtr3d 2228 . . . . . 6  |-  ( ph  ->  ( sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) A  +  E )  =  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
9998adantr 276 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ k  e.  ( ( M  +  1 ) ... ( N  - 
1 ) ) A  +  E )  =  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
10071, 84, 993eqtr3d 2234 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) C  =  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
10164, 100oveq12d 5936 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ j  e.  ( M..^ N ) B  -  sum_ j  e.  ( M..^ N ) C )  =  ( ( D  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A )  -  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) ) )
1029, 96, 92pnpcan2d 8368 . . . 4  |-  ( ph  ->  ( ( D  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A )  -  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )  =  ( D  -  E ) )
103102adantr 276 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( D  +  sum_ k  e.  ( ( M  + 
1 )..^ N ) A )  -  ( E  +  sum_ k  e.  ( ( M  + 
1 )..^ N ) A ) )  =  ( D  -  E
) )
10445, 101, 1033eqtrd 2230 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( B  -  C
)  =  ( D  -  E ) )
105 uzp1 9626 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  \/  N  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
1066, 105syl 14 . 2  |-  ( ph  ->  ( N  =  M  \/  N  e.  (
ZZ>= `  ( M  + 
1 ) ) ) )
10726, 104, 106mpjaodan 799 1  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  -  C )  =  ( D  -  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2164   A.wral 2472    C_ wss 3153   (/)c0 3446   ` cfv 5254  (class class class)co 5918   Fincfn 6794   CCcc 7870   0cc0 7872   1c1 7873    + caddc 7875    - cmin 8190   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074  ..^cfzo 10208   sum_csu 11496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497
This theorem is referenced by:  telfsumo2  11610  telfsum  11611  geosergap  11649
  Copyright terms: Public domain W3C validator