| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > telfsumo | Unicode version | ||
| Description: Sum of a telescoping series, using half-open intervals. (Contributed by Mario Carneiro, 2-May-2016.) |
| Ref | Expression |
|---|---|
| telfsumo.1 |
|
| telfsumo.2 |
|
| telfsumo.3 |
|
| telfsumo.4 |
|
| telfsumo.5 |
|
| telfsumo.6 |
|
| Ref | Expression |
|---|---|
| telfsumo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sum0 11699 |
. . . 4
| |
| 2 | telfsumo.3 |
. . . . . . . 8
| |
| 3 | 2 | eleq1d 2274 |
. . . . . . 7
|
| 4 | telfsumo.6 |
. . . . . . . 8
| |
| 5 | 4 | ralrimiva 2579 |
. . . . . . 7
|
| 6 | telfsumo.5 |
. . . . . . . 8
| |
| 7 | eluzfz1 10153 |
. . . . . . . 8
| |
| 8 | 6, 7 | syl 14 |
. . . . . . 7
|
| 9 | 3, 5, 8 | rspcdva 2882 |
. . . . . 6
|
| 10 | 9 | adantr 276 |
. . . . 5
|
| 11 | 10 | subidd 8371 |
. . . 4
|
| 12 | 1, 11 | eqtr4id 2257 |
. . 3
|
| 13 | oveq2 5952 |
. . . . . 6
| |
| 14 | 13 | adantl 277 |
. . . . 5
|
| 15 | fzo0 10292 |
. . . . 5
| |
| 16 | 14, 15 | eqtrdi 2254 |
. . . 4
|
| 17 | 16 | sumeq1d 11677 |
. . 3
|
| 18 | eqeq1 2212 |
. . . . . . . 8
| |
| 19 | telfsumo.4 |
. . . . . . . . 9
| |
| 20 | 19 | eqeq1d 2214 |
. . . . . . . 8
|
| 21 | 18, 20 | imbi12d 234 |
. . . . . . 7
|
| 22 | 21, 2 | vtoclg 2833 |
. . . . . 6
|
| 23 | 22 | imp 124 |
. . . . 5
|
| 24 | 6, 23 | sylan 283 |
. . . 4
|
| 25 | 24 | oveq2d 5960 |
. . 3
|
| 26 | 12, 17, 25 | 3eqtr4d 2248 |
. 2
|
| 27 | eluzel2 9653 |
. . . . . . 7
| |
| 28 | 6, 27 | syl 14 |
. . . . . 6
|
| 29 | eluzelz 9657 |
. . . . . . 7
| |
| 30 | 6, 29 | syl 14 |
. . . . . 6
|
| 31 | fzofig 10577 |
. . . . . 6
| |
| 32 | 28, 30, 31 | syl2anc 411 |
. . . . 5
|
| 33 | telfsumo.1 |
. . . . . . 7
| |
| 34 | 33 | eleq1d 2274 |
. . . . . 6
|
| 35 | 5 | adantr 276 |
. . . . . 6
|
| 36 | elfzofz 10285 |
. . . . . . 7
| |
| 37 | 36 | adantl 277 |
. . . . . 6
|
| 38 | 34, 35, 37 | rspcdva 2882 |
. . . . 5
|
| 39 | telfsumo.2 |
. . . . . . 7
| |
| 40 | 39 | eleq1d 2274 |
. . . . . 6
|
| 41 | fzofzp1 10356 |
. . . . . . 7
| |
| 42 | 41 | adantl 277 |
. . . . . 6
|
| 43 | 40, 35, 42 | rspcdva 2882 |
. . . . 5
|
| 44 | 32, 38, 43 | fsumsub 11763 |
. . . 4
|
| 45 | 44 | adantr 276 |
. . 3
|
| 46 | 33 | cbvsumv 11672 |
. . . . 5
|
| 47 | eluzp1m1 9672 |
. . . . . . . 8
| |
| 48 | 28, 47 | sylan 283 |
. . . . . . 7
|
| 49 | 30 | adantr 276 |
. . . . . . . . . . 11
|
| 50 | fzoval 10270 |
. . . . . . . . . . 11
| |
| 51 | 49, 50 | syl 14 |
. . . . . . . . . 10
|
| 52 | fzossfz 10288 |
. . . . . . . . . 10
| |
| 53 | 51, 52 | eqsstrrdi 3246 |
. . . . . . . . 9
|
| 54 | 53 | sselda 3193 |
. . . . . . . 8
|
| 55 | 4 | adantlr 477 |
. . . . . . . 8
|
| 56 | 54, 55 | syldan 282 |
. . . . . . 7
|
| 57 | 48, 56, 2 | fsum1p 11729 |
. . . . . 6
|
| 58 | 51 | sumeq1d 11677 |
. . . . . 6
|
| 59 | fzoval 10270 |
. . . . . . . . 9
| |
| 60 | 49, 59 | syl 14 |
. . . . . . . 8
|
| 61 | 60 | sumeq1d 11677 |
. . . . . . 7
|
| 62 | 61 | oveq2d 5960 |
. . . . . 6
|
| 63 | 57, 58, 62 | 3eqtr4d 2248 |
. . . . 5
|
| 64 | 46, 63 | eqtr3id 2252 |
. . . 4
|
| 65 | simpr 110 |
. . . . . 6
| |
| 66 | fzp1ss 10195 |
. . . . . . . . . 10
| |
| 67 | 28, 66 | syl 14 |
. . . . . . . . 9
|
| 68 | 67 | sselda 3193 |
. . . . . . . 8
|
| 69 | 68, 4 | syldan 282 |
. . . . . . 7
|
| 70 | 69 | adantlr 477 |
. . . . . 6
|
| 71 | 65, 70, 19 | fsumm1 11727 |
. . . . 5
|
| 72 | 1zzd 9399 |
. . . . . . . 8
| |
| 73 | 28 | peano2zd 9498 |
. . . . . . . 8
|
| 74 | 72, 73, 30, 69, 39 | fsumshftm 11756 |
. . . . . . 7
|
| 75 | 28 | zcnd 9496 |
. . . . . . . . . . 11
|
| 76 | ax-1cn 8018 |
. . . . . . . . . . 11
| |
| 77 | pncan 8278 |
. . . . . . . . . . 11
| |
| 78 | 75, 76, 77 | sylancl 413 |
. . . . . . . . . 10
|
| 79 | 78 | oveq1d 5959 |
. . . . . . . . 9
|
| 80 | 30, 50 | syl 14 |
. . . . . . . . 9
|
| 81 | 79, 80 | eqtr4d 2241 |
. . . . . . . 8
|
| 82 | 81 | sumeq1d 11677 |
. . . . . . 7
|
| 83 | 74, 82 | eqtrd 2238 |
. . . . . 6
|
| 84 | 83 | adantr 276 |
. . . . 5
|
| 85 | 30, 59 | syl 14 |
. . . . . . . . 9
|
| 86 | 85 | sumeq1d 11677 |
. . . . . . . 8
|
| 87 | 86 | oveq1d 5959 |
. . . . . . 7
|
| 88 | fzofig 10577 |
. . . . . . . . . 10
| |
| 89 | 73, 30, 88 | syl2anc 411 |
. . . . . . . . 9
|
| 90 | elfzofz 10285 |
. . . . . . . . . 10
| |
| 91 | 90, 69 | sylan2 286 |
. . . . . . . . 9
|
| 92 | 89, 91 | fsumcl 11711 |
. . . . . . . 8
|
| 93 | 19 | eleq1d 2274 |
. . . . . . . . 9
|
| 94 | eluzfz2 10154 |
. . . . . . . . . 10
| |
| 95 | 6, 94 | syl 14 |
. . . . . . . . 9
|
| 96 | 93, 5, 95 | rspcdva 2882 |
. . . . . . . 8
|
| 97 | 92, 96 | addcomd 8223 |
. . . . . . 7
|
| 98 | 87, 97 | eqtr3d 2240 |
. . . . . 6
|
| 99 | 98 | adantr 276 |
. . . . 5
|
| 100 | 71, 84, 99 | 3eqtr3d 2246 |
. . . 4
|
| 101 | 64, 100 | oveq12d 5962 |
. . 3
|
| 102 | 9, 96, 92 | pnpcan2d 8421 |
. . . 4
|
| 103 | 102 | adantr 276 |
. . 3
|
| 104 | 45, 101, 103 | 3eqtrd 2242 |
. 2
|
| 105 | uzp1 9682 |
. . 3
| |
| 106 | 6, 105 | syl 14 |
. 2
|
| 107 | 26, 104, 106 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 ax-caucvg 8045 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-isom 5280 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-frec 6477 df-1o 6502 df-oadd 6506 df-er 6620 df-en 6828 df-dom 6829 df-fin 6830 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-n0 9296 df-z 9373 df-uz 9649 df-q 9741 df-rp 9776 df-fz 10131 df-fzo 10265 df-seqfrec 10593 df-exp 10684 df-ihash 10921 df-cj 11153 df-re 11154 df-im 11155 df-rsqrt 11309 df-abs 11310 df-clim 11590 df-sumdc 11665 |
| This theorem is referenced by: telfsumo2 11778 telfsum 11779 geosergap 11817 |
| Copyright terms: Public domain | W3C validator |