ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  telfsumo Unicode version

Theorem telfsumo 11650
Description: Sum of a telescoping series, using half-open intervals. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
telfsumo.1  |-  ( k  =  j  ->  A  =  B )
telfsumo.2  |-  ( k  =  ( j  +  1 )  ->  A  =  C )
telfsumo.3  |-  ( k  =  M  ->  A  =  D )
telfsumo.4  |-  ( k  =  N  ->  A  =  E )
telfsumo.5  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
telfsumo.6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
Assertion
Ref Expression
telfsumo  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  -  C )  =  ( D  -  E ) )
Distinct variable groups:    A, j    B, k    C, k    j, k, M    j, N, k    ph, j, k    D, k   
k, E
Allowed substitution hints:    A( k)    B( j)    C( j)    D( j)    E( j)

Proof of Theorem telfsumo
StepHypRef Expression
1 sum0 11572 . . . 4  |-  sum_ j  e.  (/)  ( B  -  C )  =  0
2 telfsumo.3 . . . . . . . 8  |-  ( k  =  M  ->  A  =  D )
32eleq1d 2265 . . . . . . 7  |-  ( k  =  M  ->  ( A  e.  CC  <->  D  e.  CC ) )
4 telfsumo.6 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
54ralrimiva 2570 . . . . . . 7  |-  ( ph  ->  A. k  e.  ( M ... N ) A  e.  CC )
6 telfsumo.5 . . . . . . . 8  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
7 eluzfz1 10125 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
86, 7syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ( M ... N ) )
93, 5, 8rspcdva 2873 . . . . . 6  |-  ( ph  ->  D  e.  CC )
109adantr 276 . . . . 5  |-  ( (
ph  /\  N  =  M )  ->  D  e.  CC )
1110subidd 8344 . . . 4  |-  ( (
ph  /\  N  =  M )  ->  ( D  -  D )  =  0 )
121, 11eqtr4id 2248 . . 3  |-  ( (
ph  /\  N  =  M )  ->  sum_ j  e.  (/)  ( B  -  C )  =  ( D  -  D ) )
13 oveq2 5933 . . . . . 6  |-  ( N  =  M  ->  ( M..^ N )  =  ( M..^ M ) )
1413adantl 277 . . . . 5  |-  ( (
ph  /\  N  =  M )  ->  ( M..^ N )  =  ( M..^ M ) )
15 fzo0 10263 . . . . 5  |-  ( M..^ M )  =  (/)
1614, 15eqtrdi 2245 . . . 4  |-  ( (
ph  /\  N  =  M )  ->  ( M..^ N )  =  (/) )
1716sumeq1d 11550 . . 3  |-  ( (
ph  /\  N  =  M )  ->  sum_ j  e.  ( M..^ N ) ( B  -  C
)  =  sum_ j  e.  (/)  ( B  -  C ) )
18 eqeq1 2203 . . . . . . . 8  |-  ( k  =  N  ->  (
k  =  M  <->  N  =  M ) )
19 telfsumo.4 . . . . . . . . 9  |-  ( k  =  N  ->  A  =  E )
2019eqeq1d 2205 . . . . . . . 8  |-  ( k  =  N  ->  ( A  =  D  <->  E  =  D ) )
2118, 20imbi12d 234 . . . . . . 7  |-  ( k  =  N  ->  (
( k  =  M  ->  A  =  D )  <->  ( N  =  M  ->  E  =  D ) ) )
2221, 2vtoclg 2824 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  ->  E  =  D ) )
2322imp 124 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  E  =  D )
246, 23sylan 283 . . . 4  |-  ( (
ph  /\  N  =  M )  ->  E  =  D )
2524oveq2d 5941 . . 3  |-  ( (
ph  /\  N  =  M )  ->  ( D  -  E )  =  ( D  -  D ) )
2612, 17, 253eqtr4d 2239 . 2  |-  ( (
ph  /\  N  =  M )  ->  sum_ j  e.  ( M..^ N ) ( B  -  C
)  =  ( D  -  E ) )
27 eluzel2 9625 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
286, 27syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
29 eluzelz 9629 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
306, 29syl 14 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
31 fzofig 10543 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M..^ N )  e.  Fin )
3228, 30, 31syl2anc 411 . . . . 5  |-  ( ph  ->  ( M..^ N )  e.  Fin )
33 telfsumo.1 . . . . . . 7  |-  ( k  =  j  ->  A  =  B )
3433eleq1d 2265 . . . . . 6  |-  ( k  =  j  ->  ( A  e.  CC  <->  B  e.  CC ) )
355adantr 276 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  A. k  e.  ( M ... N ) A  e.  CC )
36 elfzofz 10257 . . . . . . 7  |-  ( j  e.  ( M..^ N
)  ->  j  e.  ( M ... N ) )
3736adantl 277 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  j  e.  ( M ... N ) )
3834, 35, 37rspcdva 2873 . . . . 5  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  B  e.  CC )
39 telfsumo.2 . . . . . . 7  |-  ( k  =  ( j  +  1 )  ->  A  =  C )
4039eleq1d 2265 . . . . . 6  |-  ( k  =  ( j  +  1 )  ->  ( A  e.  CC  <->  C  e.  CC ) )
41 fzofzp1 10322 . . . . . . 7  |-  ( j  e.  ( M..^ N
)  ->  ( j  +  1 )  e.  ( M ... N
) )
4241adantl 277 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( j  +  1 )  e.  ( M ... N ) )
4340, 35, 42rspcdva 2873 . . . . 5  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  C  e.  CC )
4432, 38, 43fsumsub 11636 . . . 4  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  -  C )  =  ( sum_ j  e.  ( M..^ N ) B  -  sum_ j  e.  ( M..^ N ) C ) )
4544adantr 276 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( B  -  C
)  =  ( sum_ j  e.  ( M..^ N ) B  -  sum_ j  e.  ( M..^ N ) C ) )
4633cbvsumv 11545 . . . . 5  |-  sum_ k  e.  ( M..^ N ) A  =  sum_ j  e.  ( M..^ N ) B
47 eluzp1m1 9644 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  M ) )
4828, 47sylan 283 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  M )
)
4930adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  N  e.  ZZ )
50 fzoval 10242 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  ( M..^ N )  =  ( M ... ( N  -  1 ) ) )
5149, 50syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M..^ N )  =  ( M ... ( N  -  1 ) ) )
52 fzossfz 10260 . . . . . . . . . 10  |-  ( M..^ N )  C_  ( M ... N )
5351, 52eqsstrrdi 3237 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M ... ( N  -  1 ) )  C_  ( M ... N ) )
5453sselda 3184 . . . . . . . 8  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  k  e.  ( M ... N
) )
554adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( M ... N
) )  ->  A  e.  CC )
5654, 55syldan 282 . . . . . . 7  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  A  e.  CC )
5748, 56, 2fsum1p 11602 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( M ... ( N  -  1 ) ) A  =  ( D  +  sum_ k  e.  ( ( M  + 
1 ) ... ( N  -  1 ) ) A ) )
5851sumeq1d 11550 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( M..^ N ) A  =  sum_ k  e.  ( M ... ( N  -  1 ) ) A )
59 fzoval 10242 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
( M  +  1 )..^ N )  =  ( ( M  + 
1 ) ... ( N  -  1 ) ) )
6049, 59syl 14 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( M  +  1 )..^ N )  =  ( ( M  +  1 ) ... ( N  -  1 ) ) )
6160sumeq1d 11550 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( ( M  + 
1 )..^ N ) A  =  sum_ k  e.  ( ( M  + 
1 ) ... ( N  -  1 ) ) A )
6261oveq2d 5941 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( D  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A )  =  ( D  +  sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) A ) )
6357, 58, 623eqtr4d 2239 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( M..^ N ) A  =  ( D  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
6446, 63eqtr3id 2243 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) B  =  ( D  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
65 simpr 110 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) )
66 fzp1ss 10167 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  (
( M  +  1 ) ... N ) 
C_  ( M ... N ) )
6728, 66syl 14 . . . . . . . . 9  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  C_  ( M ... N ) )
6867sselda 3184 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  k  e.  ( M ... N
) )
6968, 4syldan 282 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  CC )
7069adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  CC )
7165, 70, 19fsumm1 11600 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( ( M  + 
1 ) ... N
) A  =  (
sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) A  +  E ) )
72 1zzd 9372 . . . . . . . 8  |-  ( ph  ->  1  e.  ZZ )
7328peano2zd 9470 . . . . . . . 8  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
7472, 73, 30, 69, 39fsumshftm 11629 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) A  =  sum_ j  e.  ( ( ( M  +  1 )  - 
1 ) ... ( N  -  1 ) ) C )
7528zcnd 9468 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  CC )
76 ax-1cn 7991 . . . . . . . . . . 11  |-  1  e.  CC
77 pncan 8251 . . . . . . . . . . 11  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  + 
1 )  -  1 )  =  M )
7875, 76, 77sylancl 413 . . . . . . . . . 10  |-  ( ph  ->  ( ( M  + 
1 )  -  1 )  =  M )
7978oveq1d 5940 . . . . . . . . 9  |-  ( ph  ->  ( ( ( M  +  1 )  - 
1 ) ... ( N  -  1 ) )  =  ( M ... ( N  - 
1 ) ) )
8030, 50syl 14 . . . . . . . . 9  |-  ( ph  ->  ( M..^ N )  =  ( M ... ( N  -  1
) ) )
8179, 80eqtr4d 2232 . . . . . . . 8  |-  ( ph  ->  ( ( ( M  +  1 )  - 
1 ) ... ( N  -  1 ) )  =  ( M..^ N ) )
8281sumeq1d 11550 . . . . . . 7  |-  ( ph  -> 
sum_ j  e.  ( ( ( M  + 
1 )  -  1 ) ... ( N  -  1 ) ) C  =  sum_ j  e.  ( M..^ N ) C )
8374, 82eqtrd 2229 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) A  =  sum_ j  e.  ( M..^ N ) C )
8483adantr 276 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( ( M  + 
1 ) ... N
) A  =  sum_ j  e.  ( M..^ N ) C )
8530, 59syl 14 . . . . . . . . 9  |-  ( ph  ->  ( ( M  + 
1 )..^ N )  =  ( ( M  +  1 ) ... ( N  -  1 ) ) )
8685sumeq1d 11550 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 )..^ N ) A  =  sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) A )
8786oveq1d 5940 . . . . . . 7  |-  ( ph  ->  ( sum_ k  e.  ( ( M  +  1 )..^ N ) A  +  E )  =  ( sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) A  +  E ) )
88 fzofig 10543 . . . . . . . . . 10  |-  ( ( ( M  +  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  + 
1 )..^ N )  e.  Fin )
8973, 30, 88syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( ( M  + 
1 )..^ N )  e.  Fin )
90 elfzofz 10257 . . . . . . . . . 10  |-  ( k  e.  ( ( M  +  1 )..^ N
)  ->  k  e.  ( ( M  + 
1 ) ... N
) )
9190, 69sylan2 286 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 )..^ N ) )  ->  A  e.  CC )
9289, 91fsumcl 11584 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 )..^ N ) A  e.  CC )
9319eleq1d 2265 . . . . . . . . 9  |-  ( k  =  N  ->  ( A  e.  CC  <->  E  e.  CC ) )
94 eluzfz2 10126 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
956, 94syl 14 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( M ... N ) )
9693, 5, 95rspcdva 2873 . . . . . . . 8  |-  ( ph  ->  E  e.  CC )
9792, 96addcomd 8196 . . . . . . 7  |-  ( ph  ->  ( sum_ k  e.  ( ( M  +  1 )..^ N ) A  +  E )  =  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
9887, 97eqtr3d 2231 . . . . . 6  |-  ( ph  ->  ( sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) A  +  E )  =  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
9998adantr 276 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ k  e.  ( ( M  +  1 ) ... ( N  - 
1 ) ) A  +  E )  =  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
10071, 84, 993eqtr3d 2237 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) C  =  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
10164, 100oveq12d 5943 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ j  e.  ( M..^ N ) B  -  sum_ j  e.  ( M..^ N ) C )  =  ( ( D  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A )  -  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) ) )
1029, 96, 92pnpcan2d 8394 . . . 4  |-  ( ph  ->  ( ( D  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A )  -  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )  =  ( D  -  E ) )
103102adantr 276 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( D  +  sum_ k  e.  ( ( M  + 
1 )..^ N ) A )  -  ( E  +  sum_ k  e.  ( ( M  + 
1 )..^ N ) A ) )  =  ( D  -  E
) )
10445, 101, 1033eqtrd 2233 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( B  -  C
)  =  ( D  -  E ) )
105 uzp1 9654 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  \/  N  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
1066, 105syl 14 . 2  |-  ( ph  ->  ( N  =  M  \/  N  e.  (
ZZ>= `  ( M  + 
1 ) ) ) )
10726, 104, 106mpjaodan 799 1  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  -  C )  =  ( D  -  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2167   A.wral 2475    C_ wss 3157   (/)c0 3451   ` cfv 5259  (class class class)co 5925   Fincfn 6808   CCcc 7896   0cc0 7898   1c1 7899    + caddc 7901    - cmin 8216   ZZcz 9345   ZZ>=cuz 9620   ...cfz 10102  ..^cfzo 10236   sum_csu 11537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-seqfrec 10559  df-exp 10650  df-ihash 10887  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-sumdc 11538
This theorem is referenced by:  telfsumo2  11651  telfsum  11652  geosergap  11690
  Copyright terms: Public domain W3C validator