ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposss Unicode version

Theorem tposss 6249
Description: Subset theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposss  |-  ( F 
C_  G  -> tpos  F  C_ tpos  G )

Proof of Theorem tposss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 coss1 4784 . . 3  |-  ( F 
C_  G  ->  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) )  C_  ( G  o.  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) ) )
2 dmss 4828 . . . . . 6  |-  ( F 
C_  G  ->  dom  F 
C_  dom  G )
3 cnvss 4802 . . . . . 6  |-  ( dom 
F  C_  dom  G  ->  `' dom  F  C_  `' dom  G )
4 unss1 3306 . . . . . 6  |-  ( `' dom  F  C_  `' dom  G  ->  ( `' dom  F  u.  { (/) } )  C_  ( `' dom  G  u.  { (/) } ) )
5 resmpt 4957 . . . . . 6  |-  ( ( `' dom  F  u.  { (/)
} )  C_  ( `' dom  G  u.  { (/)
} )  ->  (
( x  e.  ( `' dom  G  u.  { (/)
} )  |->  U. `' { x } )  |`  ( `' dom  F  u.  { (/) } ) )  =  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) )
62, 3, 4, 54syl 18 . . . . 5  |-  ( F 
C_  G  ->  (
( x  e.  ( `' dom  G  u.  { (/)
} )  |->  U. `' { x } )  |`  ( `' dom  F  u.  { (/) } ) )  =  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) )
7 resss 4933 . . . . 5  |-  ( ( x  e.  ( `' dom  G  u.  { (/)
} )  |->  U. `' { x } )  |`  ( `' dom  F  u.  { (/) } ) ) 
C_  ( x  e.  ( `' dom  G  u.  { (/) } )  |->  U. `' { x } )
86, 7eqsstrrdi 3210 . . . 4  |-  ( F 
C_  G  ->  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) 
C_  ( x  e.  ( `' dom  G  u.  { (/) } )  |->  U. `' { x } ) )
9 coss2 4785 . . . 4  |-  ( ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) 
C_  ( x  e.  ( `' dom  G  u.  { (/) } )  |->  U. `' { x } )  ->  ( G  o.  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )  C_  ( G  o.  ( x  e.  ( `' dom  G  u.  { (/)
} )  |->  U. `' { x } ) ) )
108, 9syl 14 . . 3  |-  ( F 
C_  G  ->  ( G  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) )  C_  ( G  o.  ( x  e.  ( `' dom  G  u.  { (/)
} )  |->  U. `' { x } ) ) )
111, 10sstrd 3167 . 2  |-  ( F 
C_  G  ->  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) )  C_  ( G  o.  ( x  e.  ( `' dom  G  u.  { (/)
} )  |->  U. `' { x } ) ) )
12 df-tpos 6248 . 2  |- tpos  F  =  ( F  o.  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
13 df-tpos 6248 . 2  |- tpos  G  =  ( G  o.  (
x  e.  ( `' dom  G  u.  { (/)
} )  |->  U. `' { x } ) )
1411, 12, 133sstr4g 3200 1  |-  ( F 
C_  G  -> tpos  F  C_ tpos  G )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    u. cun 3129    C_ wss 3131   (/)c0 3424   {csn 3594   U.cuni 3811    |-> cmpt 4066   `'ccnv 4627   dom cdm 4628    |` cres 4630    o. ccom 4632  tpos ctpos 6247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-mpt 4068  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-res 4640  df-tpos 6248
This theorem is referenced by:  tposeq  6250
  Copyright terms: Public domain W3C validator