ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposss Unicode version

Theorem tposss 6355
Description: Subset theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposss  |-  ( F 
C_  G  -> tpos  F  C_ tpos  G )

Proof of Theorem tposss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 coss1 4851 . . 3  |-  ( F 
C_  G  ->  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) )  C_  ( G  o.  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) ) )
2 dmss 4896 . . . . . 6  |-  ( F 
C_  G  ->  dom  F 
C_  dom  G )
3 cnvss 4869 . . . . . 6  |-  ( dom 
F  C_  dom  G  ->  `' dom  F  C_  `' dom  G )
4 unss1 3350 . . . . . 6  |-  ( `' dom  F  C_  `' dom  G  ->  ( `' dom  F  u.  { (/) } )  C_  ( `' dom  G  u.  { (/) } ) )
5 resmpt 5026 . . . . . 6  |-  ( ( `' dom  F  u.  { (/)
} )  C_  ( `' dom  G  u.  { (/)
} )  ->  (
( x  e.  ( `' dom  G  u.  { (/)
} )  |->  U. `' { x } )  |`  ( `' dom  F  u.  { (/) } ) )  =  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) )
62, 3, 4, 54syl 18 . . . . 5  |-  ( F 
C_  G  ->  (
( x  e.  ( `' dom  G  u.  { (/)
} )  |->  U. `' { x } )  |`  ( `' dom  F  u.  { (/) } ) )  =  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) )
7 resss 5002 . . . . 5  |-  ( ( x  e.  ( `' dom  G  u.  { (/)
} )  |->  U. `' { x } )  |`  ( `' dom  F  u.  { (/) } ) ) 
C_  ( x  e.  ( `' dom  G  u.  { (/) } )  |->  U. `' { x } )
86, 7eqsstrrdi 3254 . . . 4  |-  ( F 
C_  G  ->  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) 
C_  ( x  e.  ( `' dom  G  u.  { (/) } )  |->  U. `' { x } ) )
9 coss2 4852 . . . 4  |-  ( ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) 
C_  ( x  e.  ( `' dom  G  u.  { (/) } )  |->  U. `' { x } )  ->  ( G  o.  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )  C_  ( G  o.  ( x  e.  ( `' dom  G  u.  { (/)
} )  |->  U. `' { x } ) ) )
108, 9syl 14 . . 3  |-  ( F 
C_  G  ->  ( G  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) )  C_  ( G  o.  ( x  e.  ( `' dom  G  u.  { (/)
} )  |->  U. `' { x } ) ) )
111, 10sstrd 3211 . 2  |-  ( F 
C_  G  ->  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) )  C_  ( G  o.  ( x  e.  ( `' dom  G  u.  { (/)
} )  |->  U. `' { x } ) ) )
12 df-tpos 6354 . 2  |- tpos  F  =  ( F  o.  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
13 df-tpos 6354 . 2  |- tpos  G  =  ( G  o.  (
x  e.  ( `' dom  G  u.  { (/)
} )  |->  U. `' { x } ) )
1411, 12, 133sstr4g 3244 1  |-  ( F 
C_  G  -> tpos  F  C_ tpos  G )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    u. cun 3172    C_ wss 3174   (/)c0 3468   {csn 3643   U.cuni 3864    |-> cmpt 4121   `'ccnv 4692   dom cdm 4693    |` cres 4695    o. ccom 4697  tpos ctpos 6353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-mpt 4123  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-res 4705  df-tpos 6354
This theorem is referenced by:  tposeq  6356
  Copyright terms: Public domain W3C validator