ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  structcnvcnv Unicode version

Theorem structcnvcnv 12923
Description: Two ways to express the relational part of a structure. (Contributed by Mario Carneiro, 29-Aug-2015.)
Assertion
Ref Expression
structcnvcnv  |-  ( F Struct  X  ->  `' `' F  =  ( F  \  { (/) } ) )

Proof of Theorem structcnvcnv
StepHypRef Expression
1 0nelxp 4711 . . . . . 6  |-  -.  (/)  e.  ( _V  X.  _V )
2 cnvcnv 5144 . . . . . . . 8  |-  `' `' F  =  ( F  i^i  ( _V  X.  _V ) )
3 inss2 3398 . . . . . . . 8  |-  ( F  i^i  ( _V  X.  _V ) )  C_  ( _V  X.  _V )
42, 3eqsstri 3229 . . . . . . 7  |-  `' `' F  C_  ( _V  X.  _V )
54sseli 3193 . . . . . 6  |-  ( (/)  e.  `' `' F  ->  (/)  e.  ( _V  X.  _V )
)
61, 5mto 664 . . . . 5  |-  -.  (/)  e.  `' `' F
7 disjsn 3700 . . . . 5  |-  ( ( `' `' F  i^i  { (/) } )  =  (/)  <->  -.  (/)  e.  `' `' F )
86, 7mpbir 146 . . . 4  |-  ( `' `' F  i^i  { (/) } )  =  (/)
9 cnvcnvss 5146 . . . . 5  |-  `' `' F  C_  F
10 reldisj 3516 . . . . 5  |-  ( `' `' F  C_  F  -> 
( ( `' `' F  i^i  { (/) } )  =  (/)  <->  `' `' F  C_  ( F 
\  { (/) } ) ) )
119, 10ax-mp 5 . . . 4  |-  ( ( `' `' F  i^i  { (/) } )  =  (/)  <->  `' `' F  C_  ( F  \  { (/) } ) )
128, 11mpbi 145 . . 3  |-  `' `' F  C_  ( F  \  { (/) } )
1312a1i 9 . 2  |-  ( F Struct  X  ->  `' `' F  C_  ( F  \  { (/)
} ) )
14 structn0fun 12920 . . . . 5  |-  ( F Struct  X  ->  Fun  ( F  \  { (/) } ) )
15 funrel 5297 . . . . 5  |-  ( Fun  ( F  \  { (/)
} )  ->  Rel  ( F  \  { (/) } ) )
1614, 15syl 14 . . . 4  |-  ( F Struct  X  ->  Rel  ( F  \  { (/) } ) )
17 dfrel2 5142 . . . 4  |-  ( Rel  ( F  \  { (/)
} )  <->  `' `' ( F  \  { (/) } )  =  ( F 
\  { (/) } ) )
1816, 17sylib 122 . . 3  |-  ( F Struct  X  ->  `' `' ( F  \  { (/) } )  =  ( F 
\  { (/) } ) )
19 difss 3303 . . . 4  |-  ( F 
\  { (/) } ) 
C_  F
20 cnvss 4859 . . . 4  |-  ( ( F  \  { (/) } )  C_  F  ->  `' ( F  \  { (/)
} )  C_  `' F )
21 cnvss 4859 . . . 4  |-  ( `' ( F  \  { (/)
} )  C_  `' F  ->  `' `' ( F  \  { (/) } )  C_  `' `' F )
2219, 20, 21mp2b 8 . . 3  |-  `' `' ( F  \  { (/) } )  C_  `' `' F
2318, 22eqsstrrdi 3250 . 2  |-  ( F Struct  X  ->  ( F  \  { (/) } )  C_  `' `' F )
2413, 23eqssd 3214 1  |-  ( F Struct  X  ->  `' `' F  =  ( F  \  { (/) } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2177   _Vcvv 2773    \ cdif 3167    i^i cin 3169    C_ wss 3170   (/)c0 3464   {csn 3638   class class class wbr 4051    X. cxp 4681   `'ccnv 4682   Rel wrel 4688   Fun wfun 5274   Struct cstr 12903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-struct 12909
This theorem is referenced by:  structfung  12924
  Copyright terms: Public domain W3C validator