| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > structcnvcnv | Unicode version | ||
| Description: Two ways to express the relational part of a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| Ref | Expression |
|---|---|
| structcnvcnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp 4711 |
. . . . . 6
| |
| 2 | cnvcnv 5144 |
. . . . . . . 8
| |
| 3 | inss2 3398 |
. . . . . . . 8
| |
| 4 | 2, 3 | eqsstri 3229 |
. . . . . . 7
|
| 5 | 4 | sseli 3193 |
. . . . . 6
|
| 6 | 1, 5 | mto 664 |
. . . . 5
|
| 7 | disjsn 3700 |
. . . . 5
| |
| 8 | 6, 7 | mpbir 146 |
. . . 4
|
| 9 | cnvcnvss 5146 |
. . . . 5
| |
| 10 | reldisj 3516 |
. . . . 5
| |
| 11 | 9, 10 | ax-mp 5 |
. . . 4
|
| 12 | 8, 11 | mpbi 145 |
. . 3
|
| 13 | 12 | a1i 9 |
. 2
|
| 14 | structn0fun 12920 |
. . . . 5
| |
| 15 | funrel 5297 |
. . . . 5
| |
| 16 | 14, 15 | syl 14 |
. . . 4
|
| 17 | dfrel2 5142 |
. . . 4
| |
| 18 | 16, 17 | sylib 122 |
. . 3
|
| 19 | difss 3303 |
. . . 4
| |
| 20 | cnvss 4859 |
. . . 4
| |
| 21 | cnvss 4859 |
. . . 4
| |
| 22 | 19, 20, 21 | mp2b 8 |
. . 3
|
| 23 | 18, 22 | eqsstrrdi 3250 |
. 2
|
| 24 | 13, 23 | eqssd 3214 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-struct 12909 |
| This theorem is referenced by: structfung 12924 |
| Copyright terms: Public domain | W3C validator |