Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > structcnvcnv | Unicode version |
Description: Two ways to express the relational part of a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
structcnvcnv | Struct |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp 4632 | . . . . . 6 | |
2 | cnvcnv 5056 | . . . . . . . 8 | |
3 | inss2 3343 | . . . . . . . 8 | |
4 | 2, 3 | eqsstri 3174 | . . . . . . 7 |
5 | 4 | sseli 3138 | . . . . . 6 |
6 | 1, 5 | mto 652 | . . . . 5 |
7 | disjsn 3638 | . . . . 5 | |
8 | 6, 7 | mpbir 145 | . . . 4 |
9 | cnvcnvss 5058 | . . . . 5 | |
10 | reldisj 3460 | . . . . 5 | |
11 | 9, 10 | ax-mp 5 | . . . 4 |
12 | 8, 11 | mpbi 144 | . . 3 |
13 | 12 | a1i 9 | . 2 Struct |
14 | structn0fun 12407 | . . . . 5 Struct | |
15 | funrel 5205 | . . . . 5 | |
16 | 14, 15 | syl 14 | . . . 4 Struct |
17 | dfrel2 5054 | . . . 4 | |
18 | 16, 17 | sylib 121 | . . 3 Struct |
19 | difss 3248 | . . . 4 | |
20 | cnvss 4777 | . . . 4 | |
21 | cnvss 4777 | . . . 4 | |
22 | 19, 20, 21 | mp2b 8 | . . 3 |
23 | 18, 22 | eqsstrrdi 3195 | . 2 Struct |
24 | 13, 23 | eqssd 3159 | 1 Struct |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 wceq 1343 wcel 2136 cvv 2726 cdif 3113 cin 3115 wss 3116 c0 3409 csn 3576 class class class wbr 3982 cxp 4602 ccnv 4603 wrel 4609 wfun 5182 Struct cstr 12390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-struct 12396 |
This theorem is referenced by: structfung 12411 |
Copyright terms: Public domain | W3C validator |