| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > structcnvcnv | Unicode version | ||
| Description: Two ways to express the relational part of a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| Ref | Expression |
|---|---|
| structcnvcnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp 4746 |
. . . . . 6
| |
| 2 | cnvcnv 5180 |
. . . . . . . 8
| |
| 3 | inss2 3425 |
. . . . . . . 8
| |
| 4 | 2, 3 | eqsstri 3256 |
. . . . . . 7
|
| 5 | 4 | sseli 3220 |
. . . . . 6
|
| 6 | 1, 5 | mto 666 |
. . . . 5
|
| 7 | disjsn 3728 |
. . . . 5
| |
| 8 | 6, 7 | mpbir 146 |
. . . 4
|
| 9 | cnvcnvss 5182 |
. . . . 5
| |
| 10 | reldisj 3543 |
. . . . 5
| |
| 11 | 9, 10 | ax-mp 5 |
. . . 4
|
| 12 | 8, 11 | mpbi 145 |
. . 3
|
| 13 | 12 | a1i 9 |
. 2
|
| 14 | structn0fun 13040 |
. . . . 5
| |
| 15 | funrel 5334 |
. . . . 5
| |
| 16 | 14, 15 | syl 14 |
. . . 4
|
| 17 | dfrel2 5178 |
. . . 4
| |
| 18 | 16, 17 | sylib 122 |
. . 3
|
| 19 | difss 3330 |
. . . 4
| |
| 20 | cnvss 4894 |
. . . 4
| |
| 21 | cnvss 4894 |
. . . 4
| |
| 22 | 19, 20, 21 | mp2b 8 |
. . 3
|
| 23 | 18, 22 | eqsstrrdi 3277 |
. 2
|
| 24 | 13, 23 | eqssd 3241 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-struct 13029 |
| This theorem is referenced by: structfung 13044 |
| Copyright terms: Public domain | W3C validator |