ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  structcnvcnv Unicode version

Theorem structcnvcnv 12495
Description: Two ways to express the relational part of a structure. (Contributed by Mario Carneiro, 29-Aug-2015.)
Assertion
Ref Expression
structcnvcnv  |-  ( F Struct  X  ->  `' `' F  =  ( F  \  { (/) } ) )

Proof of Theorem structcnvcnv
StepHypRef Expression
1 0nelxp 4668 . . . . . 6  |-  -.  (/)  e.  ( _V  X.  _V )
2 cnvcnv 5095 . . . . . . . 8  |-  `' `' F  =  ( F  i^i  ( _V  X.  _V ) )
3 inss2 3370 . . . . . . . 8  |-  ( F  i^i  ( _V  X.  _V ) )  C_  ( _V  X.  _V )
42, 3eqsstri 3201 . . . . . . 7  |-  `' `' F  C_  ( _V  X.  _V )
54sseli 3165 . . . . . 6  |-  ( (/)  e.  `' `' F  ->  (/)  e.  ( _V  X.  _V )
)
61, 5mto 663 . . . . 5  |-  -.  (/)  e.  `' `' F
7 disjsn 3668 . . . . 5  |-  ( ( `' `' F  i^i  { (/) } )  =  (/)  <->  -.  (/)  e.  `' `' F )
86, 7mpbir 146 . . . 4  |-  ( `' `' F  i^i  { (/) } )  =  (/)
9 cnvcnvss 5097 . . . . 5  |-  `' `' F  C_  F
10 reldisj 3488 . . . . 5  |-  ( `' `' F  C_  F  -> 
( ( `' `' F  i^i  { (/) } )  =  (/)  <->  `' `' F  C_  ( F 
\  { (/) } ) ) )
119, 10ax-mp 5 . . . 4  |-  ( ( `' `' F  i^i  { (/) } )  =  (/)  <->  `' `' F  C_  ( F  \  { (/) } ) )
128, 11mpbi 145 . . 3  |-  `' `' F  C_  ( F  \  { (/) } )
1312a1i 9 . 2  |-  ( F Struct  X  ->  `' `' F  C_  ( F  \  { (/)
} ) )
14 structn0fun 12492 . . . . 5  |-  ( F Struct  X  ->  Fun  ( F  \  { (/) } ) )
15 funrel 5247 . . . . 5  |-  ( Fun  ( F  \  { (/)
} )  ->  Rel  ( F  \  { (/) } ) )
1614, 15syl 14 . . . 4  |-  ( F Struct  X  ->  Rel  ( F  \  { (/) } ) )
17 dfrel2 5093 . . . 4  |-  ( Rel  ( F  \  { (/)
} )  <->  `' `' ( F  \  { (/) } )  =  ( F 
\  { (/) } ) )
1816, 17sylib 122 . . 3  |-  ( F Struct  X  ->  `' `' ( F  \  { (/) } )  =  ( F 
\  { (/) } ) )
19 difss 3275 . . . 4  |-  ( F 
\  { (/) } ) 
C_  F
20 cnvss 4814 . . . 4  |-  ( ( F  \  { (/) } )  C_  F  ->  `' ( F  \  { (/)
} )  C_  `' F )
21 cnvss 4814 . . . 4  |-  ( `' ( F  \  { (/)
} )  C_  `' F  ->  `' `' ( F  \  { (/) } )  C_  `' `' F )
2219, 20, 21mp2b 8 . . 3  |-  `' `' ( F  \  { (/) } )  C_  `' `' F
2318, 22eqsstrrdi 3222 . 2  |-  ( F Struct  X  ->  ( F  \  { (/) } )  C_  `' `' F )
2413, 23eqssd 3186 1  |-  ( F Struct  X  ->  `' `' F  =  ( F  \  { (/) } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    = wceq 1363    e. wcel 2159   _Vcvv 2751    \ cdif 3140    i^i cin 3142    C_ wss 3143   (/)c0 3436   {csn 3606   class class class wbr 4017    X. cxp 4638   `'ccnv 4639   Rel wrel 4645   Fun wfun 5224   Struct cstr 12475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-pow 4188  ax-pr 4223
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-ral 2472  df-rex 2473  df-rab 2476  df-v 2753  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-br 4018  df-opab 4079  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-iota 5192  df-fun 5232  df-fv 5238  df-struct 12481
This theorem is referenced by:  structfung  12496
  Copyright terms: Public domain W3C validator