| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffvresb | Unicode version | ||
| Description: A necessary and sufficient condition for a restricted function. (Contributed by Mario Carneiro, 14-Nov-2013.) |
| Ref | Expression |
|---|---|
| ffvresb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdm 5479 |
. . . . . 6
| |
| 2 | dmres 5026 |
. . . . . . 7
| |
| 3 | inss2 3425 |
. . . . . . 7
| |
| 4 | 2, 3 | eqsstri 3256 |
. . . . . 6
|
| 5 | 1, 4 | eqsstrrdi 3277 |
. . . . 5
|
| 6 | 5 | sselda 3224 |
. . . 4
|
| 7 | fvres 5651 |
. . . . . 6
| |
| 8 | 7 | adantl 277 |
. . . . 5
|
| 9 | ffvelcdm 5768 |
. . . . 5
| |
| 10 | 8, 9 | eqeltrrd 2307 |
. . . 4
|
| 11 | 6, 10 | jca 306 |
. . 3
|
| 12 | 11 | ralrimiva 2603 |
. 2
|
| 13 | simpl 109 |
. . . . . . 7
| |
| 14 | 13 | ralimi 2593 |
. . . . . 6
|
| 15 | dfss3 3213 |
. . . . . 6
| |
| 16 | 14, 15 | sylibr 134 |
. . . . 5
|
| 17 | funfn 5348 |
. . . . . 6
| |
| 18 | fnssres 5436 |
. . . . . 6
| |
| 19 | 17, 18 | sylanb 284 |
. . . . 5
|
| 20 | 16, 19 | sylan2 286 |
. . . 4
|
| 21 | simpr 110 |
. . . . . . . 8
| |
| 22 | 7 | eleq1d 2298 |
. . . . . . . 8
|
| 23 | 21, 22 | imbitrrid 156 |
. . . . . . 7
|
| 24 | 23 | ralimia 2591 |
. . . . . 6
|
| 25 | 24 | adantl 277 |
. . . . 5
|
| 26 | fnfvrnss 5795 |
. . . . 5
| |
| 27 | 20, 25, 26 | syl2anc 411 |
. . . 4
|
| 28 | df-f 5322 |
. . . 4
| |
| 29 | 20, 27, 28 | sylanbrc 417 |
. . 3
|
| 30 | 29 | ex 115 |
. 2
|
| 31 | 12, 30 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 |
| This theorem is referenced by: resflem 5799 tfrcl 6510 frecfcllem 6550 lmbr2 14888 lmff 14923 |
| Copyright terms: Public domain | W3C validator |