Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ffvresb | Unicode version |
Description: A necessary and sufficient condition for a restricted function. (Contributed by Mario Carneiro, 14-Nov-2013.) |
Ref | Expression |
---|---|
ffvresb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm 5343 | . . . . . 6 | |
2 | dmres 4905 | . . . . . . 7 | |
3 | inss2 3343 | . . . . . . 7 | |
4 | 2, 3 | eqsstri 3174 | . . . . . 6 |
5 | 1, 4 | eqsstrrdi 3195 | . . . . 5 |
6 | 5 | sselda 3142 | . . . 4 |
7 | fvres 5510 | . . . . . 6 | |
8 | 7 | adantl 275 | . . . . 5 |
9 | ffvelrn 5618 | . . . . 5 | |
10 | 8, 9 | eqeltrrd 2244 | . . . 4 |
11 | 6, 10 | jca 304 | . . 3 |
12 | 11 | ralrimiva 2539 | . 2 |
13 | simpl 108 | . . . . . . 7 | |
14 | 13 | ralimi 2529 | . . . . . 6 |
15 | dfss3 3132 | . . . . . 6 | |
16 | 14, 15 | sylibr 133 | . . . . 5 |
17 | funfn 5218 | . . . . . 6 | |
18 | fnssres 5301 | . . . . . 6 | |
19 | 17, 18 | sylanb 282 | . . . . 5 |
20 | 16, 19 | sylan2 284 | . . . 4 |
21 | simpr 109 | . . . . . . . 8 | |
22 | 7 | eleq1d 2235 | . . . . . . . 8 |
23 | 21, 22 | syl5ibr 155 | . . . . . . 7 |
24 | 23 | ralimia 2527 | . . . . . 6 |
25 | 24 | adantl 275 | . . . . 5 |
26 | fnfvrnss 5645 | . . . . 5 | |
27 | 20, 25, 26 | syl2anc 409 | . . . 4 |
28 | df-f 5192 | . . . 4 | |
29 | 20, 27, 28 | sylanbrc 414 | . . 3 |
30 | 29 | ex 114 | . 2 |
31 | 12, 30 | impbid2 142 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 cin 3115 wss 3116 cdm 4604 crn 4605 cres 4606 wfun 5182 wfn 5183 wf 5184 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 |
This theorem is referenced by: resflem 5649 tfrcl 6332 frecfcllem 6372 lmbr2 12864 lmff 12899 |
Copyright terms: Public domain | W3C validator |