| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffvresb | Unicode version | ||
| Description: A necessary and sufficient condition for a restricted function. (Contributed by Mario Carneiro, 14-Nov-2013.) |
| Ref | Expression |
|---|---|
| ffvresb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdm 5431 |
. . . . . 6
| |
| 2 | dmres 4980 |
. . . . . . 7
| |
| 3 | inss2 3394 |
. . . . . . 7
| |
| 4 | 2, 3 | eqsstri 3225 |
. . . . . 6
|
| 5 | 1, 4 | eqsstrrdi 3246 |
. . . . 5
|
| 6 | 5 | sselda 3193 |
. . . 4
|
| 7 | fvres 5600 |
. . . . . 6
| |
| 8 | 7 | adantl 277 |
. . . . 5
|
| 9 | ffvelcdm 5713 |
. . . . 5
| |
| 10 | 8, 9 | eqeltrrd 2283 |
. . . 4
|
| 11 | 6, 10 | jca 306 |
. . 3
|
| 12 | 11 | ralrimiva 2579 |
. 2
|
| 13 | simpl 109 |
. . . . . . 7
| |
| 14 | 13 | ralimi 2569 |
. . . . . 6
|
| 15 | dfss3 3182 |
. . . . . 6
| |
| 16 | 14, 15 | sylibr 134 |
. . . . 5
|
| 17 | funfn 5301 |
. . . . . 6
| |
| 18 | fnssres 5389 |
. . . . . 6
| |
| 19 | 17, 18 | sylanb 284 |
. . . . 5
|
| 20 | 16, 19 | sylan2 286 |
. . . 4
|
| 21 | simpr 110 |
. . . . . . . 8
| |
| 22 | 7 | eleq1d 2274 |
. . . . . . . 8
|
| 23 | 21, 22 | imbitrrid 156 |
. . . . . . 7
|
| 24 | 23 | ralimia 2567 |
. . . . . 6
|
| 25 | 24 | adantl 277 |
. . . . 5
|
| 26 | fnfvrnss 5740 |
. . . . 5
| |
| 27 | 20, 25, 26 | syl2anc 411 |
. . . 4
|
| 28 | df-f 5275 |
. . . 4
| |
| 29 | 20, 27, 28 | sylanbrc 417 |
. . 3
|
| 30 | 29 | ex 115 |
. 2
|
| 31 | 12, 30 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 |
| This theorem is referenced by: resflem 5744 tfrcl 6450 frecfcllem 6490 lmbr2 14686 lmff 14721 |
| Copyright terms: Public domain | W3C validator |