Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ffvresb | Unicode version |
Description: A necessary and sufficient condition for a restricted function. (Contributed by Mario Carneiro, 14-Nov-2013.) |
Ref | Expression |
---|---|
ffvresb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm 5353 | . . . . . 6 | |
2 | dmres 4912 | . . . . . . 7 | |
3 | inss2 3348 | . . . . . . 7 | |
4 | 2, 3 | eqsstri 3179 | . . . . . 6 |
5 | 1, 4 | eqsstrrdi 3200 | . . . . 5 |
6 | 5 | sselda 3147 | . . . 4 |
7 | fvres 5520 | . . . . . 6 | |
8 | 7 | adantl 275 | . . . . 5 |
9 | ffvelcdm 5629 | . . . . 5 | |
10 | 8, 9 | eqeltrrd 2248 | . . . 4 |
11 | 6, 10 | jca 304 | . . 3 |
12 | 11 | ralrimiva 2543 | . 2 |
13 | simpl 108 | . . . . . . 7 | |
14 | 13 | ralimi 2533 | . . . . . 6 |
15 | dfss3 3137 | . . . . . 6 | |
16 | 14, 15 | sylibr 133 | . . . . 5 |
17 | funfn 5228 | . . . . . 6 | |
18 | fnssres 5311 | . . . . . 6 | |
19 | 17, 18 | sylanb 282 | . . . . 5 |
20 | 16, 19 | sylan2 284 | . . . 4 |
21 | simpr 109 | . . . . . . . 8 | |
22 | 7 | eleq1d 2239 | . . . . . . . 8 |
23 | 21, 22 | syl5ibr 155 | . . . . . . 7 |
24 | 23 | ralimia 2531 | . . . . . 6 |
25 | 24 | adantl 275 | . . . . 5 |
26 | fnfvrnss 5656 | . . . . 5 | |
27 | 20, 25, 26 | syl2anc 409 | . . . 4 |
28 | df-f 5202 | . . . 4 | |
29 | 20, 27, 28 | sylanbrc 415 | . . 3 |
30 | 29 | ex 114 | . 2 |
31 | 12, 30 | impbid2 142 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 cin 3120 wss 3121 cdm 4611 crn 4612 cres 4613 wfun 5192 wfn 5193 wf 5194 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 |
This theorem is referenced by: resflem 5660 tfrcl 6343 frecfcllem 6383 lmbr2 13008 lmff 13043 |
Copyright terms: Public domain | W3C validator |