ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txss12 Unicode version

Theorem txss12 14853
Description: Subset property of the topological product. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
txss12  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( A  tX  C
)  C_  ( B  tX  D ) )

Proof of Theorem txss12
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2207 . . . 4  |-  ran  (
x  e.  B , 
y  e.  D  |->  ( x  X.  y ) )  =  ran  (
x  e.  B , 
y  e.  D  |->  ( x  X.  y ) )
21txbasex 14844 . . 3  |-  ( ( B  e.  V  /\  D  e.  W )  ->  ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) )  e. 
_V )
3 resmpo 6066 . . . . . 6  |-  ( ( A  C_  B  /\  C  C_  D )  -> 
( ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) )  |`  ( A  X.  C
) )  =  ( x  e.  A , 
y  e.  C  |->  ( x  X.  y ) ) )
4 resss 5002 . . . . . 6  |-  ( ( x  e.  B , 
y  e.  D  |->  ( x  X.  y ) )  |`  ( A  X.  C ) )  C_  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y
) )
53, 4eqsstrrdi 3254 . . . . 5  |-  ( ( A  C_  B  /\  C  C_  D )  -> 
( x  e.  A ,  y  e.  C  |->  ( x  X.  y
) )  C_  (
x  e.  B , 
y  e.  D  |->  ( x  X.  y ) ) )
65adantl 277 . . . 4  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( x  e.  A ,  y  e.  C  |->  ( x  X.  y
) )  C_  (
x  e.  B , 
y  e.  D  |->  ( x  X.  y ) ) )
7 rnss 4927 . . . 4  |-  ( ( x  e.  A , 
y  e.  C  |->  ( x  X.  y ) )  C_  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) )  ->  ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y
) )  C_  ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y
) ) )
86, 7syl 14 . . 3  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  ->  ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y
) )  C_  ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y
) ) )
9 tgss 14650 . . 3  |-  ( ( ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) )  e. 
_V  /\  ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) 
C_  ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) ) )  ->  ( topGen `  ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y
) ) )  C_  ( topGen `  ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) ) ) )
102, 8, 9syl2an2r 595 . 2  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( topGen `  ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) )  C_  ( topGen ` 
ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) ) ) )
11 ssexg 4199 . . . . 5  |-  ( ( A  C_  B  /\  B  e.  V )  ->  A  e.  _V )
12 ssexg 4199 . . . . 5  |-  ( ( C  C_  D  /\  D  e.  W )  ->  C  e.  _V )
13 eqid 2207 . . . . . 6  |-  ran  (
x  e.  A , 
y  e.  C  |->  ( x  X.  y ) )  =  ran  (
x  e.  A , 
y  e.  C  |->  ( x  X.  y ) )
1413txval 14842 . . . . 5  |-  ( ( A  e.  _V  /\  C  e.  _V )  ->  ( A  tX  C
)  =  ( topGen ` 
ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) ) )
1511, 12, 14syl2an 289 . . . 4  |-  ( ( ( A  C_  B  /\  B  e.  V
)  /\  ( C  C_  D  /\  D  e.  W ) )  -> 
( A  tX  C
)  =  ( topGen ` 
ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) ) )
1615an4s 588 . . 3  |-  ( ( ( A  C_  B  /\  C  C_  D )  /\  ( B  e.  V  /\  D  e.  W ) )  -> 
( A  tX  C
)  =  ( topGen ` 
ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) ) )
1716ancoms 268 . 2  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( A  tX  C
)  =  ( topGen ` 
ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) ) )
181txval 14842 . . 3  |-  ( ( B  e.  V  /\  D  e.  W )  ->  ( B  tX  D
)  =  ( topGen ` 
ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) ) ) )
1918adantr 276 . 2  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( B  tX  D
)  =  ( topGen ` 
ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) ) ) )
2010, 17, 193sstr4d 3246 1  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( A  tX  C
)  C_  ( B  tX  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   _Vcvv 2776    C_ wss 3174    X. cxp 4691   ran crn 4694    |` cres 4695   ` cfv 5290  (class class class)co 5967    e. cmpo 5969   topGenctg 13201    tX ctx 14839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-topgen 13207  df-tx 14840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator