ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txss12 Unicode version

Theorem txss12 13851
Description: Subset property of the topological product. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
txss12  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( A  tX  C
)  C_  ( B  tX  D ) )

Proof of Theorem txss12
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . . 4  |-  ran  (
x  e.  B , 
y  e.  D  |->  ( x  X.  y ) )  =  ran  (
x  e.  B , 
y  e.  D  |->  ( x  X.  y ) )
21txbasex 13842 . . 3  |-  ( ( B  e.  V  /\  D  e.  W )  ->  ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) )  e. 
_V )
3 resmpo 5975 . . . . . 6  |-  ( ( A  C_  B  /\  C  C_  D )  -> 
( ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) )  |`  ( A  X.  C
) )  =  ( x  e.  A , 
y  e.  C  |->  ( x  X.  y ) ) )
4 resss 4933 . . . . . 6  |-  ( ( x  e.  B , 
y  e.  D  |->  ( x  X.  y ) )  |`  ( A  X.  C ) )  C_  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y
) )
53, 4eqsstrrdi 3210 . . . . 5  |-  ( ( A  C_  B  /\  C  C_  D )  -> 
( x  e.  A ,  y  e.  C  |->  ( x  X.  y
) )  C_  (
x  e.  B , 
y  e.  D  |->  ( x  X.  y ) ) )
65adantl 277 . . . 4  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( x  e.  A ,  y  e.  C  |->  ( x  X.  y
) )  C_  (
x  e.  B , 
y  e.  D  |->  ( x  X.  y ) ) )
7 rnss 4859 . . . 4  |-  ( ( x  e.  A , 
y  e.  C  |->  ( x  X.  y ) )  C_  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) )  ->  ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y
) )  C_  ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y
) ) )
86, 7syl 14 . . 3  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  ->  ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y
) )  C_  ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y
) ) )
9 tgss 13648 . . 3  |-  ( ( ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) )  e. 
_V  /\  ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) 
C_  ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) ) )  ->  ( topGen `  ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y
) ) )  C_  ( topGen `  ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) ) ) )
102, 8, 9syl2an2r 595 . 2  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( topGen `  ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) )  C_  ( topGen ` 
ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) ) ) )
11 ssexg 4144 . . . . 5  |-  ( ( A  C_  B  /\  B  e.  V )  ->  A  e.  _V )
12 ssexg 4144 . . . . 5  |-  ( ( C  C_  D  /\  D  e.  W )  ->  C  e.  _V )
13 eqid 2177 . . . . . 6  |-  ran  (
x  e.  A , 
y  e.  C  |->  ( x  X.  y ) )  =  ran  (
x  e.  A , 
y  e.  C  |->  ( x  X.  y ) )
1413txval 13840 . . . . 5  |-  ( ( A  e.  _V  /\  C  e.  _V )  ->  ( A  tX  C
)  =  ( topGen ` 
ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) ) )
1511, 12, 14syl2an 289 . . . 4  |-  ( ( ( A  C_  B  /\  B  e.  V
)  /\  ( C  C_  D  /\  D  e.  W ) )  -> 
( A  tX  C
)  =  ( topGen ` 
ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) ) )
1615an4s 588 . . 3  |-  ( ( ( A  C_  B  /\  C  C_  D )  /\  ( B  e.  V  /\  D  e.  W ) )  -> 
( A  tX  C
)  =  ( topGen ` 
ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) ) )
1716ancoms 268 . 2  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( A  tX  C
)  =  ( topGen ` 
ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) ) )
181txval 13840 . . 3  |-  ( ( B  e.  V  /\  D  e.  W )  ->  ( B  tX  D
)  =  ( topGen ` 
ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) ) ) )
1918adantr 276 . 2  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( B  tX  D
)  =  ( topGen ` 
ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) ) ) )
2010, 17, 193sstr4d 3202 1  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( A  tX  C
)  C_  ( B  tX  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   _Vcvv 2739    C_ wss 3131    X. cxp 4626   ran crn 4629    |` cres 4630   ` cfv 5218  (class class class)co 5877    e. cmpo 5879   topGenctg 12708    tX ctx 13837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-topgen 12714  df-tx 13838
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator