ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txss12 Unicode version

Theorem txss12 12906
Description: Subset property of the topological product. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
txss12  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( A  tX  C
)  C_  ( B  tX  D ) )

Proof of Theorem txss12
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2165 . . . 4  |-  ran  (
x  e.  B , 
y  e.  D  |->  ( x  X.  y ) )  =  ran  (
x  e.  B , 
y  e.  D  |->  ( x  X.  y ) )
21txbasex 12897 . . 3  |-  ( ( B  e.  V  /\  D  e.  W )  ->  ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) )  e. 
_V )
3 resmpo 5940 . . . . . 6  |-  ( ( A  C_  B  /\  C  C_  D )  -> 
( ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) )  |`  ( A  X.  C
) )  =  ( x  e.  A , 
y  e.  C  |->  ( x  X.  y ) ) )
4 resss 4908 . . . . . 6  |-  ( ( x  e.  B , 
y  e.  D  |->  ( x  X.  y ) )  |`  ( A  X.  C ) )  C_  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y
) )
53, 4eqsstrrdi 3195 . . . . 5  |-  ( ( A  C_  B  /\  C  C_  D )  -> 
( x  e.  A ,  y  e.  C  |->  ( x  X.  y
) )  C_  (
x  e.  B , 
y  e.  D  |->  ( x  X.  y ) ) )
65adantl 275 . . . 4  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( x  e.  A ,  y  e.  C  |->  ( x  X.  y
) )  C_  (
x  e.  B , 
y  e.  D  |->  ( x  X.  y ) ) )
7 rnss 4834 . . . 4  |-  ( ( x  e.  A , 
y  e.  C  |->  ( x  X.  y ) )  C_  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) )  ->  ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y
) )  C_  ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y
) ) )
86, 7syl 14 . . 3  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  ->  ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y
) )  C_  ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y
) ) )
9 tgss 12703 . . 3  |-  ( ( ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) )  e. 
_V  /\  ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) 
C_  ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) ) )  ->  ( topGen `  ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y
) ) )  C_  ( topGen `  ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) ) ) )
102, 8, 9syl2an2r 585 . 2  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( topGen `  ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) )  C_  ( topGen ` 
ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) ) ) )
11 ssexg 4121 . . . . 5  |-  ( ( A  C_  B  /\  B  e.  V )  ->  A  e.  _V )
12 ssexg 4121 . . . . 5  |-  ( ( C  C_  D  /\  D  e.  W )  ->  C  e.  _V )
13 eqid 2165 . . . . . 6  |-  ran  (
x  e.  A , 
y  e.  C  |->  ( x  X.  y ) )  =  ran  (
x  e.  A , 
y  e.  C  |->  ( x  X.  y ) )
1413txval 12895 . . . . 5  |-  ( ( A  e.  _V  /\  C  e.  _V )  ->  ( A  tX  C
)  =  ( topGen ` 
ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) ) )
1511, 12, 14syl2an 287 . . . 4  |-  ( ( ( A  C_  B  /\  B  e.  V
)  /\  ( C  C_  D  /\  D  e.  W ) )  -> 
( A  tX  C
)  =  ( topGen ` 
ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) ) )
1615an4s 578 . . 3  |-  ( ( ( A  C_  B  /\  C  C_  D )  /\  ( B  e.  V  /\  D  e.  W ) )  -> 
( A  tX  C
)  =  ( topGen ` 
ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) ) )
1716ancoms 266 . 2  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( A  tX  C
)  =  ( topGen ` 
ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) ) )
181txval 12895 . . 3  |-  ( ( B  e.  V  /\  D  e.  W )  ->  ( B  tX  D
)  =  ( topGen ` 
ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) ) ) )
1918adantr 274 . 2  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( B  tX  D
)  =  ( topGen ` 
ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) ) ) )
2010, 17, 193sstr4d 3187 1  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( A  tX  C
)  C_  ( B  tX  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   _Vcvv 2726    C_ wss 3116    X. cxp 4602   ran crn 4605    |` cres 4606   ` cfv 5188  (class class class)co 5842    e. cmpo 5844   topGenctg 12571    tX ctx 12892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-topgen 12577  df-tx 12893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator