Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqsstrdi | Unicode version |
Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
eqsstrdi.1 | |
eqsstrdi.2 |
Ref | Expression |
---|---|
eqsstrdi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrdi.1 | . 2 | |
2 | eqsstrdi.2 | . . 3 | |
3 | 2 | a1i 9 | . 2 |
4 | 1, 3 | eqsstrd 3160 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1332 wss 3098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-11 1483 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-in 3104 df-ss 3111 |
This theorem is referenced by: eqsstrrdi 3177 resasplitss 5342 fimacnv 5589 en2other2 7110 exmidfodomrlemim 7115 pw1on 7140 suplocexprlemex 7621 ennnfonelemkh 12092 toponsspwpwg 12359 ntrss2 12460 cnprcl2k 12545 reldvg 12987 bj-nntrans 13464 nninfsellemsuc 13525 |
Copyright terms: Public domain | W3C validator |