ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstrdi Unicode version

Theorem eqsstrdi 3245
Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
eqsstrdi.1  |-  ( ph  ->  A  =  B )
eqsstrdi.2  |-  B  C_  C
Assertion
Ref Expression
eqsstrdi  |-  ( ph  ->  A  C_  C )

Proof of Theorem eqsstrdi
StepHypRef Expression
1 eqsstrdi.1 . 2  |-  ( ph  ->  A  =  B )
2 eqsstrdi.2 . . 3  |-  B  C_  C
32a1i 9 . 2  |-  ( ph  ->  B  C_  C )
41, 3eqsstrd 3229 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179
This theorem is referenced by:  eqsstrrdi  3246  resasplitss  5455  fimacnv  5709  en2other2  7304  exmidfodomrlemim  7309  pw1on  7338  suplocexprlemex  7835  fzowrddc  11100  swrdlend  11111  1arith  12690  ennnfonelemkh  12783  aprap  14048  znf1o  14413  mplbasss  14458  toponsspwpwg  14494  ntrss2  14593  cnprcl2k  14678  reldvg  15151  bj-nntrans  15887  nninfsellemsuc  15949
  Copyright terms: Public domain W3C validator