| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrdi | Unicode version | ||
| Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| eqsstrdi.1 |
|
| eqsstrdi.2 |
|
| Ref | Expression |
|---|---|
| eqsstrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrdi.1 |
. 2
| |
| 2 | eqsstrdi.2 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | eqsstrd 3237 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: eqsstrrdi 3254 resasplitss 5477 fimacnv 5732 en2other2 7335 exmidfodomrlemim 7340 pw1on 7372 suplocexprlemex 7870 fzowrddc 11138 swrdlend 11149 1arith 12805 ennnfonelemkh 12898 aprap 14163 znf1o 14528 mplbasss 14573 toponsspwpwg 14609 ntrss2 14708 cnprcl2k 14793 reldvg 15266 bj-nntrans 16086 nninfsellemsuc 16151 |
| Copyright terms: Public domain | W3C validator |