| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrdi | Unicode version | ||
| Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| eqsstrdi.1 |
|
| eqsstrdi.2 |
|
| Ref | Expression |
|---|---|
| eqsstrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrdi.1 |
. 2
| |
| 2 | eqsstrdi.2 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | eqsstrd 3229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: eqsstrrdi 3246 resasplitss 5455 fimacnv 5709 en2other2 7304 exmidfodomrlemim 7309 pw1on 7338 suplocexprlemex 7835 fzowrddc 11100 swrdlend 11111 1arith 12690 ennnfonelemkh 12783 aprap 14048 znf1o 14413 mplbasss 14458 toponsspwpwg 14494 ntrss2 14593 cnprcl2k 14678 reldvg 15151 bj-nntrans 15887 nninfsellemsuc 15949 |
| Copyright terms: Public domain | W3C validator |