ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstrdi Unicode version

Theorem eqsstrdi 3253
Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
eqsstrdi.1  |-  ( ph  ->  A  =  B )
eqsstrdi.2  |-  B  C_  C
Assertion
Ref Expression
eqsstrdi  |-  ( ph  ->  A  C_  C )

Proof of Theorem eqsstrdi
StepHypRef Expression
1 eqsstrdi.1 . 2  |-  ( ph  ->  A  =  B )
2 eqsstrdi.2 . . 3  |-  B  C_  C
32a1i 9 . 2  |-  ( ph  ->  B  C_  C )
41, 3eqsstrd 3237 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    C_ wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-in 3180  df-ss 3187
This theorem is referenced by:  eqsstrrdi  3254  resasplitss  5477  fimacnv  5732  en2other2  7335  exmidfodomrlemim  7340  pw1on  7372  suplocexprlemex  7870  fzowrddc  11138  swrdlend  11149  1arith  12805  ennnfonelemkh  12898  aprap  14163  znf1o  14528  mplbasss  14573  toponsspwpwg  14609  ntrss2  14708  cnprcl2k  14793  reldvg  15266  bj-nntrans  16086  nninfsellemsuc  16151
  Copyright terms: Public domain W3C validator