| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrdi | Unicode version | ||
| Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| eqsstrdi.1 |
|
| eqsstrdi.2 |
|
| Ref | Expression |
|---|---|
| eqsstrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrdi.1 |
. 2
| |
| 2 | eqsstrdi.2 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | eqsstrd 3260 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: eqsstrrdi 3277 resasplitss 5505 fimacnv 5764 en2other2 7374 exmidfodomrlemim 7379 pw1on 7411 suplocexprlemex 7909 fzowrddc 11179 swrdlend 11190 1arith 12890 ennnfonelemkh 12983 aprap 14250 znf1o 14615 mplbasss 14660 toponsspwpwg 14696 ntrss2 14795 cnprcl2k 14880 reldvg 15353 bj-nntrans 16314 nninfsellemsuc 16378 |
| Copyright terms: Public domain | W3C validator |