ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstrdi Unicode version

Theorem eqsstrdi 3235
Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
eqsstrdi.1  |-  ( ph  ->  A  =  B )
eqsstrdi.2  |-  B  C_  C
Assertion
Ref Expression
eqsstrdi  |-  ( ph  ->  A  C_  C )

Proof of Theorem eqsstrdi
StepHypRef Expression
1 eqsstrdi.1 . 2  |-  ( ph  ->  A  =  B )
2 eqsstrdi.2 . . 3  |-  B  C_  C
32a1i 9 . 2  |-  ( ph  ->  B  C_  C )
41, 3eqsstrd 3219 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170
This theorem is referenced by:  eqsstrrdi  3236  resasplitss  5437  fimacnv  5691  en2other2  7263  exmidfodomrlemim  7268  pw1on  7293  suplocexprlemex  7789  1arith  12536  ennnfonelemkh  12629  aprap  13842  znf1o  14207  toponsspwpwg  14258  ntrss2  14357  cnprcl2k  14442  reldvg  14915  bj-nntrans  15597  nninfsellemsuc  15656
  Copyright terms: Public domain W3C validator