| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrdi | Unicode version | ||
| Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| eqsstrdi.1 |
|
| eqsstrdi.2 |
|
| Ref | Expression |
|---|---|
| eqsstrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrdi.1 |
. 2
| |
| 2 | eqsstrdi.2 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | eqsstrd 3220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: eqsstrrdi 3237 resasplitss 5440 fimacnv 5694 en2other2 7275 exmidfodomrlemim 7280 pw1on 7309 suplocexprlemex 7806 1arith 12561 ennnfonelemkh 12654 aprap 13918 znf1o 14283 toponsspwpwg 14342 ntrss2 14441 cnprcl2k 14526 reldvg 14999 bj-nntrans 15681 nninfsellemsuc 15743 |
| Copyright terms: Public domain | W3C validator |