ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstrdi Unicode version

Theorem eqsstrdi 3199
Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
eqsstrdi.1  |-  ( ph  ->  A  =  B )
eqsstrdi.2  |-  B  C_  C
Assertion
Ref Expression
eqsstrdi  |-  ( ph  ->  A  C_  C )

Proof of Theorem eqsstrdi
StepHypRef Expression
1 eqsstrdi.1 . 2  |-  ( ph  ->  A  =  B )
2 eqsstrdi.2 . . 3  |-  B  C_  C
32a1i 9 . 2  |-  ( ph  ->  B  C_  C )
41, 3eqsstrd 3183 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    C_ wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134
This theorem is referenced by:  eqsstrrdi  3200  resasplitss  5377  fimacnv  5625  en2other2  7173  exmidfodomrlemim  7178  pw1on  7203  suplocexprlemex  7684  1arith  12319  ennnfonelemkh  12367  toponsspwpwg  12814  ntrss2  12915  cnprcl2k  13000  reldvg  13442  bj-nntrans  13986  nninfsellemsuc  14045
  Copyright terms: Public domain W3C validator