ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstrrid Unicode version

Theorem eqsstrrid 3217
Description: B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
eqsstrrid.1  |-  B  =  A
eqsstrrid.2  |-  ( ph  ->  B  C_  C )
Assertion
Ref Expression
eqsstrrid  |-  ( ph  ->  A  C_  C )

Proof of Theorem eqsstrrid
StepHypRef Expression
1 eqsstrrid.1 . . 3  |-  B  =  A
21eqcomi 2193 . 2  |-  A  =  B
3 eqsstrrid.2 . 2  |-  ( ph  ->  B  C_  C )
42, 3eqsstrid 3216 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    C_ wss 3144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-in 3150  df-ss 3157
This theorem is referenced by:  abnexg  4464  relcnvtr  5166  resasplitss  5414  fimacnvdisj  5419  fimacnv  5666  f1ompt  5688  tfr1onlemres  6374  tfrcllemres  6387
  Copyright terms: Public domain W3C validator