Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqsstrrid | Unicode version |
Description: B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
eqsstrrid.1 | |
eqsstrrid.2 |
Ref | Expression |
---|---|
eqsstrrid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrrid.1 | . . 3 | |
2 | 1 | eqcomi 2174 | . 2 |
3 | eqsstrrid.2 | . 2 | |
4 | 2, 3 | eqsstrid 3193 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: abnexg 4429 relcnvtr 5128 resasplitss 5375 fimacnvdisj 5380 fimacnv 5623 f1ompt 5645 tfr1onlemres 6326 tfrcllemres 6339 |
Copyright terms: Public domain | W3C validator |