ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstrrid Unicode version

Theorem eqsstrrid 3271
Description: B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
eqsstrrid.1  |-  B  =  A
eqsstrrid.2  |-  ( ph  ->  B  C_  C )
Assertion
Ref Expression
eqsstrrid  |-  ( ph  ->  A  C_  C )

Proof of Theorem eqsstrrid
StepHypRef Expression
1 eqsstrrid.1 . . 3  |-  B  =  A
21eqcomi 2233 . 2  |-  A  =  B
3 eqsstrrid.2 . 2  |-  ( ph  ->  B  C_  C )
42, 3eqsstrid 3270 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    C_ wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210
This theorem is referenced by:  abnexg  4537  relcnvtr  5248  resasplitss  5505  fimacnvdisj  5510  fimacnv  5764  f1ompt  5786  tfr1onlemres  6495  tfrcllemres  6508
  Copyright terms: Public domain W3C validator