ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstrrid Unicode version

Theorem eqsstrrid 3194
Description: B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
eqsstrrid.1  |-  B  =  A
eqsstrrid.2  |-  ( ph  ->  B  C_  C )
Assertion
Ref Expression
eqsstrrid  |-  ( ph  ->  A  C_  C )

Proof of Theorem eqsstrrid
StepHypRef Expression
1 eqsstrrid.1 . . 3  |-  B  =  A
21eqcomi 2174 . 2  |-  A  =  B
3 eqsstrrid.2 . 2  |-  ( ph  ->  B  C_  C )
42, 3eqsstrid 3193 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    C_ wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134
This theorem is referenced by:  abnexg  4429  relcnvtr  5128  resasplitss  5375  fimacnvdisj  5380  fimacnv  5623  f1ompt  5645  tfr1onlemres  6326  tfrcllemres  6339
  Copyright terms: Public domain W3C validator