ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstrrid Unicode version

Theorem eqsstrrid 3230
Description: B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
eqsstrrid.1  |-  B  =  A
eqsstrrid.2  |-  ( ph  ->  B  C_  C )
Assertion
Ref Expression
eqsstrrid  |-  ( ph  ->  A  C_  C )

Proof of Theorem eqsstrrid
StepHypRef Expression
1 eqsstrrid.1 . . 3  |-  B  =  A
21eqcomi 2200 . 2  |-  A  =  B
3 eqsstrrid.2 . 2  |-  ( ph  ->  B  C_  C )
42, 3eqsstrid 3229 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170
This theorem is referenced by:  abnexg  4481  relcnvtr  5189  resasplitss  5437  fimacnvdisj  5442  fimacnv  5691  f1ompt  5713  tfr1onlemres  6407  tfrcllemres  6420
  Copyright terms: Public domain W3C validator