ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcnvtr Unicode version

Theorem relcnvtr 5123
Description: A relation is transitive iff its converse is transitive. (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
relcnvtr  |-  ( Rel 
R  ->  ( ( R  o.  R )  C_  R  <->  ( `' R  o.  `' R )  C_  `' R ) )

Proof of Theorem relcnvtr
StepHypRef Expression
1 cnvco 4789 . . 3  |-  `' ( R  o.  R )  =  ( `' R  o.  `' R )
2 cnvss 4777 . . 3  |-  ( ( R  o.  R ) 
C_  R  ->  `' ( R  o.  R
)  C_  `' R
)
31, 2eqsstrrid 3189 . 2  |-  ( ( R  o.  R ) 
C_  R  ->  ( `' R  o.  `' R )  C_  `' R )
4 cnvco 4789 . . . 4  |-  `' ( `' R  o.  `' R )  =  ( `' `' R  o.  `' `' R )
5 cnvss 4777 . . . 4  |-  ( ( `' R  o.  `' R )  C_  `' R  ->  `' ( `' R  o.  `' R
)  C_  `' `' R )
6 sseq1 3165 . . . . 5  |-  ( `' ( `' R  o.  `' R )  =  ( `' `' R  o.  `' `' R )  ->  ( `' ( `' R  o.  `' R )  C_  `' `' R  <->  ( `' `' R  o.  `' `' R )  C_  `' `' R ) )
7 dfrel2 5054 . . . . . . 7  |-  ( Rel 
R  <->  `' `' R  =  R
)
8 coeq1 4761 . . . . . . . . . 10  |-  ( `' `' R  =  R  ->  ( `' `' R  o.  `' `' R )  =  ( R  o.  `' `' R ) )
9 coeq2 4762 . . . . . . . . . 10  |-  ( `' `' R  =  R  ->  ( R  o.  `' `' R )  =  ( R  o.  R ) )
108, 9eqtrd 2198 . . . . . . . . 9  |-  ( `' `' R  =  R  ->  ( `' `' R  o.  `' `' R )  =  ( R  o.  R ) )
11 id 19 . . . . . . . . 9  |-  ( `' `' R  =  R  ->  `' `' R  =  R
)
1210, 11sseq12d 3173 . . . . . . . 8  |-  ( `' `' R  =  R  ->  ( ( `' `' R  o.  `' `' R )  C_  `' `' R  <->  ( R  o.  R )  C_  R
) )
1312biimpd 143 . . . . . . 7  |-  ( `' `' R  =  R  ->  ( ( `' `' R  o.  `' `' R )  C_  `' `' R  ->  ( R  o.  R )  C_  R ) )
147, 13sylbi 120 . . . . . 6  |-  ( Rel 
R  ->  ( ( `' `' R  o.  `' `' R )  C_  `' `' R  ->  ( R  o.  R )  C_  R ) )
1514com12 30 . . . . 5  |-  ( ( `' `' R  o.  `' `' R )  C_  `' `' R  ->  ( Rel 
R  ->  ( R  o.  R )  C_  R
) )
166, 15syl6bi 162 . . . 4  |-  ( `' ( `' R  o.  `' R )  =  ( `' `' R  o.  `' `' R )  ->  ( `' ( `' R  o.  `' R )  C_  `' `' R  ->  ( Rel 
R  ->  ( R  o.  R )  C_  R
) ) )
174, 5, 16mpsyl 65 . . 3  |-  ( ( `' R  o.  `' R )  C_  `' R  ->  ( Rel  R  ->  ( R  o.  R
)  C_  R )
)
1817com12 30 . 2  |-  ( Rel 
R  ->  ( ( `' R  o.  `' R )  C_  `' R  ->  ( R  o.  R )  C_  R
) )
193, 18impbid2 142 1  |-  ( Rel 
R  ->  ( ( R  o.  R )  C_  R  <->  ( `' R  o.  `' R )  C_  `' R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    C_ wss 3116   `'ccnv 4603    o. ccom 4608   Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator