| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relcnvtr | Unicode version | ||
| Description: A relation is transitive iff its converse is transitive. (Contributed by FL, 19-Sep-2011.) |
| Ref | Expression |
|---|---|
| relcnvtr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvco 4852 |
. . 3
| |
| 2 | cnvss 4840 |
. . 3
| |
| 3 | 1, 2 | eqsstrrid 3231 |
. 2
|
| 4 | cnvco 4852 |
. . . 4
| |
| 5 | cnvss 4840 |
. . . 4
| |
| 6 | sseq1 3207 |
. . . . 5
| |
| 7 | dfrel2 5121 |
. . . . . . 7
| |
| 8 | coeq1 4824 |
. . . . . . . . . 10
| |
| 9 | coeq2 4825 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | eqtrd 2229 |
. . . . . . . . 9
|
| 11 | id 19 |
. . . . . . . . 9
| |
| 12 | 10, 11 | sseq12d 3215 |
. . . . . . . 8
|
| 13 | 12 | biimpd 144 |
. . . . . . 7
|
| 14 | 7, 13 | sylbi 121 |
. . . . . 6
|
| 15 | 14 | com12 30 |
. . . . 5
|
| 16 | 6, 15 | biimtrdi 163 |
. . . 4
|
| 17 | 4, 5, 16 | mpsyl 65 |
. . 3
|
| 18 | 17 | com12 30 |
. 2
|
| 19 | 3, 18 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |