Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relcnvtr | Unicode version |
Description: A relation is transitive iff its converse is transitive. (Contributed by FL, 19-Sep-2011.) |
Ref | Expression |
---|---|
relcnvtr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvco 4789 | . . 3 | |
2 | cnvss 4777 | . . 3 | |
3 | 1, 2 | eqsstrrid 3189 | . 2 |
4 | cnvco 4789 | . . . 4 | |
5 | cnvss 4777 | . . . 4 | |
6 | sseq1 3165 | . . . . 5 | |
7 | dfrel2 5054 | . . . . . . 7 | |
8 | coeq1 4761 | . . . . . . . . . 10 | |
9 | coeq2 4762 | . . . . . . . . . 10 | |
10 | 8, 9 | eqtrd 2198 | . . . . . . . . 9 |
11 | id 19 | . . . . . . . . 9 | |
12 | 10, 11 | sseq12d 3173 | . . . . . . . 8 |
13 | 12 | biimpd 143 | . . . . . . 7 |
14 | 7, 13 | sylbi 120 | . . . . . 6 |
15 | 14 | com12 30 | . . . . 5 |
16 | 6, 15 | syl6bi 162 | . . . 4 |
17 | 4, 5, 16 | mpsyl 65 | . . 3 |
18 | 17 | com12 30 | . 2 |
19 | 3, 18 | impbid2 142 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wss 3116 ccnv 4603 ccom 4608 wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |