ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcnvtr Unicode version

Theorem relcnvtr 5203
Description: A relation is transitive iff its converse is transitive. (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
relcnvtr  |-  ( Rel 
R  ->  ( ( R  o.  R )  C_  R  <->  ( `' R  o.  `' R )  C_  `' R ) )

Proof of Theorem relcnvtr
StepHypRef Expression
1 cnvco 4864 . . 3  |-  `' ( R  o.  R )  =  ( `' R  o.  `' R )
2 cnvss 4852 . . 3  |-  ( ( R  o.  R ) 
C_  R  ->  `' ( R  o.  R
)  C_  `' R
)
31, 2eqsstrrid 3240 . 2  |-  ( ( R  o.  R ) 
C_  R  ->  ( `' R  o.  `' R )  C_  `' R )
4 cnvco 4864 . . . 4  |-  `' ( `' R  o.  `' R )  =  ( `' `' R  o.  `' `' R )
5 cnvss 4852 . . . 4  |-  ( ( `' R  o.  `' R )  C_  `' R  ->  `' ( `' R  o.  `' R
)  C_  `' `' R )
6 sseq1 3216 . . . . 5  |-  ( `' ( `' R  o.  `' R )  =  ( `' `' R  o.  `' `' R )  ->  ( `' ( `' R  o.  `' R )  C_  `' `' R  <->  ( `' `' R  o.  `' `' R )  C_  `' `' R ) )
7 dfrel2 5134 . . . . . . 7  |-  ( Rel 
R  <->  `' `' R  =  R
)
8 coeq1 4836 . . . . . . . . . 10  |-  ( `' `' R  =  R  ->  ( `' `' R  o.  `' `' R )  =  ( R  o.  `' `' R ) )
9 coeq2 4837 . . . . . . . . . 10  |-  ( `' `' R  =  R  ->  ( R  o.  `' `' R )  =  ( R  o.  R ) )
108, 9eqtrd 2238 . . . . . . . . 9  |-  ( `' `' R  =  R  ->  ( `' `' R  o.  `' `' R )  =  ( R  o.  R ) )
11 id 19 . . . . . . . . 9  |-  ( `' `' R  =  R  ->  `' `' R  =  R
)
1210, 11sseq12d 3224 . . . . . . . 8  |-  ( `' `' R  =  R  ->  ( ( `' `' R  o.  `' `' R )  C_  `' `' R  <->  ( R  o.  R )  C_  R
) )
1312biimpd 144 . . . . . . 7  |-  ( `' `' R  =  R  ->  ( ( `' `' R  o.  `' `' R )  C_  `' `' R  ->  ( R  o.  R )  C_  R ) )
147, 13sylbi 121 . . . . . 6  |-  ( Rel 
R  ->  ( ( `' `' R  o.  `' `' R )  C_  `' `' R  ->  ( R  o.  R )  C_  R ) )
1514com12 30 . . . . 5  |-  ( ( `' `' R  o.  `' `' R )  C_  `' `' R  ->  ( Rel 
R  ->  ( R  o.  R )  C_  R
) )
166, 15biimtrdi 163 . . . 4  |-  ( `' ( `' R  o.  `' R )  =  ( `' `' R  o.  `' `' R )  ->  ( `' ( `' R  o.  `' R )  C_  `' `' R  ->  ( Rel 
R  ->  ( R  o.  R )  C_  R
) ) )
174, 5, 16mpsyl 65 . . 3  |-  ( ( `' R  o.  `' R )  C_  `' R  ->  ( Rel  R  ->  ( R  o.  R
)  C_  R )
)
1817com12 30 . 2  |-  ( Rel 
R  ->  ( ( `' R  o.  `' R )  C_  `' R  ->  ( R  o.  R )  C_  R
) )
193, 18impbid2 143 1  |-  ( Rel 
R  ->  ( ( R  o.  R )  C_  R  <->  ( `' R  o.  `' R )  C_  `' R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    C_ wss 3166   `'ccnv 4675    o. ccom 4680   Rel wrel 4681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator