Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relcnvtr | Unicode version |
Description: A relation is transitive iff its converse is transitive. (Contributed by FL, 19-Sep-2011.) |
Ref | Expression |
---|---|
relcnvtr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvco 4764 | . . 3 | |
2 | cnvss 4752 | . . 3 | |
3 | 1, 2 | eqsstrrid 3171 | . 2 |
4 | cnvco 4764 | . . . 4 | |
5 | cnvss 4752 | . . . 4 | |
6 | sseq1 3147 | . . . . 5 | |
7 | dfrel2 5029 | . . . . . . 7 | |
8 | coeq1 4736 | . . . . . . . . . 10 | |
9 | coeq2 4737 | . . . . . . . . . 10 | |
10 | 8, 9 | eqtrd 2187 | . . . . . . . . 9 |
11 | id 19 | . . . . . . . . 9 | |
12 | 10, 11 | sseq12d 3155 | . . . . . . . 8 |
13 | 12 | biimpd 143 | . . . . . . 7 |
14 | 7, 13 | sylbi 120 | . . . . . 6 |
15 | 14 | com12 30 | . . . . 5 |
16 | 6, 15 | syl6bi 162 | . . . 4 |
17 | 4, 5, 16 | mpsyl 65 | . . 3 |
18 | 17 | com12 30 | . 2 |
19 | 3, 18 | impbid2 142 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1332 wss 3098 ccnv 4578 ccom 4583 wrel 4584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-br 3962 df-opab 4022 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |