ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrdi Unicode version

Theorem sseqtrdi 3189
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
sseqtrdi.1  |-  ( ph  ->  A  C_  B )
sseqtrdi.2  |-  B  =  C
Assertion
Ref Expression
sseqtrdi  |-  ( ph  ->  A  C_  C )

Proof of Theorem sseqtrdi
StepHypRef Expression
1 sseqtrdi.1 . 2  |-  ( ph  ->  A  C_  B )
2 sseqtrdi.2 . . 3  |-  B  =  C
32sseq2i 3168 . 2  |-  ( A 
C_  B  <->  A  C_  C
)
41, 3sylib 121 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    C_ wss 3115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3121  df-ss 3128
This theorem is referenced by:  sseqtrrdi  3190  onintonm  4493  relrelss  5129  iotanul  5167  foimacnv  5449  cauappcvgprlemladdru  7593  zsumdc  11321  fsum3cvg3  11333  zproddc  11516  nninfdcex  11882  zsupssdc  11883  distop  12685  cnptoprest  12839  pwle2  13838  pw1nct  13843
  Copyright terms: Public domain W3C validator