| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrdi | Unicode version | ||
| Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrdi.1 |
|
| sseqtrdi.2 |
|
| Ref | Expression |
|---|---|
| sseqtrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrdi.1 |
. 2
| |
| 2 | sseqtrdi.2 |
. . 3
| |
| 3 | 2 | sseq2i 3224 |
. 2
|
| 4 | 1, 3 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: sseqtrrdi 3246 onintonm 4578 relrelss 5223 iotanul 5261 foimacnv 5557 pw1m 7365 cauappcvgprlemladdru 7799 nninfdcex 10412 zsupssdc 10413 zsumdc 11780 fsum3cvg3 11792 zproddc 11975 imasaddfnlemg 13231 sraring 14296 distop 14642 cnptoprest 14796 upgr1edc 15799 pwle2 16107 pw1nct 16112 |
| Copyright terms: Public domain | W3C validator |