ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrdi Unicode version

Theorem sseqtrdi 3232
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
sseqtrdi.1  |-  ( ph  ->  A  C_  B )
sseqtrdi.2  |-  B  =  C
Assertion
Ref Expression
sseqtrdi  |-  ( ph  ->  A  C_  C )

Proof of Theorem sseqtrdi
StepHypRef Expression
1 sseqtrdi.1 . 2  |-  ( ph  ->  A  C_  B )
2 sseqtrdi.2 . . 3  |-  B  =  C
32sseq2i 3211 . 2  |-  ( A 
C_  B  <->  A  C_  C
)
41, 3sylib 122 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170
This theorem is referenced by:  sseqtrrdi  3233  onintonm  4554  relrelss  5197  iotanul  5235  foimacnv  5523  cauappcvgprlemladdru  7725  nninfdcex  10329  zsupssdc  10330  zsumdc  11551  fsum3cvg3  11563  zproddc  11746  imasaddfnlemg  12967  sraring  14015  distop  14331  cnptoprest  14485  pwle2  15653  pw1nct  15657
  Copyright terms: Public domain W3C validator