Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseqtrdi | Unicode version |
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
sseqtrdi.1 | |
sseqtrdi.2 |
Ref | Expression |
---|---|
sseqtrdi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrdi.1 | . 2 | |
2 | sseqtrdi.2 | . . 3 | |
3 | 2 | sseq2i 3168 | . 2 |
4 | 1, 3 | sylib 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wss 3115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3121 df-ss 3128 |
This theorem is referenced by: sseqtrrdi 3190 onintonm 4493 relrelss 5129 iotanul 5167 foimacnv 5449 cauappcvgprlemladdru 7593 zsumdc 11321 fsum3cvg3 11333 zproddc 11516 nninfdcex 11882 zsupssdc 11883 distop 12685 cnptoprest 12839 pwle2 13838 pw1nct 13843 |
Copyright terms: Public domain | W3C validator |