ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrdi Unicode version

Theorem sseqtrdi 3272
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
sseqtrdi.1  |-  ( ph  ->  A  C_  B )
sseqtrdi.2  |-  B  =  C
Assertion
Ref Expression
sseqtrdi  |-  ( ph  ->  A  C_  C )

Proof of Theorem sseqtrdi
StepHypRef Expression
1 sseqtrdi.1 . 2  |-  ( ph  ->  A  C_  B )
2 sseqtrdi.2 . . 3  |-  B  =  C
32sseq2i 3251 . 2  |-  ( A 
C_  B  <->  A  C_  C
)
41, 3sylib 122 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    C_ wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210
This theorem is referenced by:  sseqtrrdi  3273  onintonm  4608  relrelss  5254  iotanul  5293  foimacnv  5589  pw1m  7405  cauappcvgprlemladdru  7839  nninfdcex  10452  zsupssdc  10453  zsumdc  11890  fsum3cvg3  11902  zproddc  12085  imasaddfnlemg  13342  sraring  14407  distop  14753  cnptoprest  14907  upgr1edc  15915  pwle2  16323  pw1nct  16328
  Copyright terms: Public domain W3C validator