| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrdi | Unicode version | ||
| Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrdi.1 |
|
| sseqtrdi.2 |
|
| Ref | Expression |
|---|---|
| sseqtrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrdi.1 |
. 2
| |
| 2 | sseqtrdi.2 |
. . 3
| |
| 3 | 2 | sseq2i 3251 |
. 2
|
| 4 | 1, 3 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sseqtrrdi 3273 onintonm 4608 relrelss 5254 iotanul 5293 foimacnv 5589 pw1m 7405 cauappcvgprlemladdru 7839 nninfdcex 10452 zsupssdc 10453 zsumdc 11890 fsum3cvg3 11902 zproddc 12085 imasaddfnlemg 13342 sraring 14407 distop 14753 cnptoprest 14907 upgr1edc 15915 pwle2 16323 pw1nct 16328 |
| Copyright terms: Public domain | W3C validator |