| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrdi | Unicode version | ||
| Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrdi.1 |
|
| sseqtrdi.2 |
|
| Ref | Expression |
|---|---|
| sseqtrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrdi.1 |
. 2
| |
| 2 | sseqtrdi.2 |
. . 3
| |
| 3 | 2 | sseq2i 3219 |
. 2
|
| 4 | 1, 3 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: sseqtrrdi 3241 onintonm 4564 relrelss 5208 iotanul 5246 foimacnv 5539 cauappcvgprlemladdru 7768 nninfdcex 10378 zsupssdc 10379 zsumdc 11637 fsum3cvg3 11649 zproddc 11832 imasaddfnlemg 13088 sraring 14153 distop 14499 cnptoprest 14653 pwle2 15868 pw1nct 15873 |
| Copyright terms: Public domain | W3C validator |