Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abnexg | Unicode version |
Description: Sufficient condition for a class abstraction to be a proper class. The class can be thought of as an expression in and the abstraction appearing in the statement as the class of values as varies through . Assuming the antecedents, if that class is a set, then so is the "domain" . The converse holds without antecedent, see abrexexg 6086. Note that the second antecedent cannot be translated to since may depend on . In applications, one may take or (see snnex 4426 and pwnex 4427 respectively, proved from abnex 4425, which is a consequence of abnexg 4424 with ). (Contributed by BJ, 2-Dec-2021.) |
Ref | Expression |
---|---|
abnexg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 4417 | . 2 | |
2 | simpl 108 | . . . . 5 | |
3 | 2 | ralimi 2529 | . . . 4 |
4 | dfiun2g 3898 | . . . . . 6 | |
5 | 4 | eleq1d 2235 | . . . . 5 |
6 | 5 | biimprd 157 | . . . 4 |
7 | 3, 6 | syl 14 | . . 3 |
8 | simpr 109 | . . . . 5 | |
9 | 8 | ralimi 2529 | . . . 4 |
10 | iunid 3921 | . . . . 5 | |
11 | snssi 3717 | . . . . . . 7 | |
12 | 11 | ralimi 2529 | . . . . . 6 |
13 | ss2iun 3881 | . . . . . 6 | |
14 | 12, 13 | syl 14 | . . . . 5 |
15 | 10, 14 | eqsstrrid 3189 | . . . 4 |
16 | ssexg 4121 | . . . . 5 | |
17 | 16 | ex 114 | . . . 4 |
18 | 9, 15, 17 | 3syl 17 | . . 3 |
19 | 7, 18 | syld 45 | . 2 |
20 | 1, 19 | syl5 32 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cab 2151 wral 2444 wrex 2445 cvv 2726 wss 3116 csn 3576 cuni 3789 ciun 3866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-sn 3582 df-uni 3790 df-iun 3868 |
This theorem is referenced by: abnex 4425 |
Copyright terms: Public domain | W3C validator |