ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abnexg Unicode version

Theorem abnexg 4477
Description: Sufficient condition for a class abstraction to be a proper class. The class  F can be thought of as an expression in  x and the abstraction appearing in the statement as the class of values  F as  x varies through  A. Assuming the antecedents, if that class is a set, then so is the "domain"  A. The converse holds without antecedent, see abrexexg 6170. Note that the second antecedent  A. x  e.  A x  e.  F cannot be translated to  A  C_  F since  F may depend on  x. In applications, one may take  F  =  { x } or  F  =  ~P x (see snnex 4479 and pwnex 4480 respectively, proved from abnex 4478, which is a consequence of abnexg 4477 with  A  =  _V). (Contributed by BJ, 2-Dec-2021.)
Assertion
Ref Expression
abnexg  |-  ( A. x  e.  A  ( F  e.  V  /\  x  e.  F )  ->  ( { y  |  E. x  e.  A  y  =  F }  e.  W  ->  A  e. 
_V ) )
Distinct variable groups:    x, A, y   
y, F
Allowed substitution hints:    F( x)    V( x, y)    W( x, y)

Proof of Theorem abnexg
StepHypRef Expression
1 uniexg 4470 . 2  |-  ( { y  |  E. x  e.  A  y  =  F }  e.  W  ->  U. { y  |  E. x  e.  A  y  =  F }  e.  _V )
2 simpl 109 . . . . 5  |-  ( ( F  e.  V  /\  x  e.  F )  ->  F  e.  V )
32ralimi 2557 . . . 4  |-  ( A. x  e.  A  ( F  e.  V  /\  x  e.  F )  ->  A. x  e.  A  F  e.  V )
4 dfiun2g 3944 . . . . . 6  |-  ( A. x  e.  A  F  e.  V  ->  U_ x  e.  A  F  =  U. { y  |  E. x  e.  A  y  =  F } )
54eleq1d 2262 . . . . 5  |-  ( A. x  e.  A  F  e.  V  ->  ( U_ x  e.  A  F  e.  _V  <->  U. { y  |  E. x  e.  A  y  =  F }  e.  _V ) )
65biimprd 158 . . . 4  |-  ( A. x  e.  A  F  e.  V  ->  ( U. { y  |  E. x  e.  A  y  =  F }  e.  _V  ->  U_ x  e.  A  F  e.  _V )
)
73, 6syl 14 . . 3  |-  ( A. x  e.  A  ( F  e.  V  /\  x  e.  F )  ->  ( U. { y  |  E. x  e.  A  y  =  F }  e.  _V  ->  U_ x  e.  A  F  e.  _V ) )
8 simpr 110 . . . . 5  |-  ( ( F  e.  V  /\  x  e.  F )  ->  x  e.  F )
98ralimi 2557 . . . 4  |-  ( A. x  e.  A  ( F  e.  V  /\  x  e.  F )  ->  A. x  e.  A  x  e.  F )
10 iunid 3968 . . . . 5  |-  U_ x  e.  A  { x }  =  A
11 snssi 3762 . . . . . . 7  |-  ( x  e.  F  ->  { x }  C_  F )
1211ralimi 2557 . . . . . 6  |-  ( A. x  e.  A  x  e.  F  ->  A. x  e.  A  { x }  C_  F )
13 ss2iun 3927 . . . . . 6  |-  ( A. x  e.  A  {
x }  C_  F  ->  U_ x  e.  A  { x }  C_  U_ x  e.  A  F
)
1412, 13syl 14 . . . . 5  |-  ( A. x  e.  A  x  e.  F  ->  U_ x  e.  A  { x }  C_  U_ x  e.  A  F )
1510, 14eqsstrrid 3226 . . . 4  |-  ( A. x  e.  A  x  e.  F  ->  A  C_  U_ x  e.  A  F
)
16 ssexg 4168 . . . . 5  |-  ( ( A  C_  U_ x  e.  A  F  /\  U_ x  e.  A  F  e.  _V )  ->  A  e.  _V )
1716ex 115 . . . 4  |-  ( A 
C_  U_ x  e.  A  F  ->  ( U_ x  e.  A  F  e.  _V  ->  A  e.  _V ) )
189, 15, 173syl 17 . . 3  |-  ( A. x  e.  A  ( F  e.  V  /\  x  e.  F )  ->  ( U_ x  e.  A  F  e.  _V  ->  A  e.  _V )
)
197, 18syld 45 . 2  |-  ( A. x  e.  A  ( F  e.  V  /\  x  e.  F )  ->  ( U. { y  |  E. x  e.  A  y  =  F }  e.  _V  ->  A  e.  _V ) )
201, 19syl5 32 1  |-  ( A. x  e.  A  ( F  e.  V  /\  x  e.  F )  ->  ( { y  |  E. x  e.  A  y  =  F }  e.  W  ->  A  e. 
_V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   E.wrex 2473   _Vcvv 2760    C_ wss 3153   {csn 3618   U.cuni 3835   U_ciun 3912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3159  df-ss 3166  df-sn 3624  df-uni 3836  df-iun 3914
This theorem is referenced by:  abnex  4478
  Copyright terms: Public domain W3C validator