| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abnexg | Unicode version | ||
| Description: Sufficient condition for
a class abstraction to be a proper class. The
class |
| Ref | Expression |
|---|---|
| abnexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 4504 |
. 2
| |
| 2 | simpl 109 |
. . . . 5
| |
| 3 | 2 | ralimi 2571 |
. . . 4
|
| 4 | dfiun2g 3973 |
. . . . . 6
| |
| 5 | 4 | eleq1d 2276 |
. . . . 5
|
| 6 | 5 | biimprd 158 |
. . . 4
|
| 7 | 3, 6 | syl 14 |
. . 3
|
| 8 | simpr 110 |
. . . . 5
| |
| 9 | 8 | ralimi 2571 |
. . . 4
|
| 10 | iunid 3997 |
. . . . 5
| |
| 11 | snssi 3788 |
. . . . . . 7
| |
| 12 | 11 | ralimi 2571 |
. . . . . 6
|
| 13 | ss2iun 3956 |
. . . . . 6
| |
| 14 | 12, 13 | syl 14 |
. . . . 5
|
| 15 | 10, 14 | eqsstrrid 3248 |
. . . 4
|
| 16 | ssexg 4199 |
. . . . 5
| |
| 17 | 16 | ex 115 |
. . . 4
|
| 18 | 9, 15, 17 | 3syl 17 |
. . 3
|
| 19 | 7, 18 | syld 45 |
. 2
|
| 20 | 1, 19 | syl5 32 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-in 3180 df-ss 3187 df-sn 3649 df-uni 3865 df-iun 3943 |
| This theorem is referenced by: abnex 4512 |
| Copyright terms: Public domain | W3C validator |