ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimacnvdisj Unicode version

Theorem fimacnvdisj 5307
Description: The preimage of a class disjoint with a mapping's codomain is empty. (Contributed by FL, 24-Jan-2007.)
Assertion
Ref Expression
fimacnvdisj  |-  ( ( F : A --> B  /\  ( B  i^i  C )  =  (/) )  ->  ( `' F " C )  =  (/) )

Proof of Theorem fimacnvdisj
StepHypRef Expression
1 df-rn 4550 . . . 4  |-  ran  F  =  dom  `' F
2 frn 5281 . . . . 5  |-  ( F : A --> B  ->  ran  F  C_  B )
32adantr 274 . . . 4  |-  ( ( F : A --> B  /\  ( B  i^i  C )  =  (/) )  ->  ran  F 
C_  B )
41, 3eqsstrrid 3144 . . 3  |-  ( ( F : A --> B  /\  ( B  i^i  C )  =  (/) )  ->  dom  `' F  C_  B )
5 ssdisj 3419 . . 3  |-  ( ( dom  `' F  C_  B  /\  ( B  i^i  C )  =  (/) )  -> 
( dom  `' F  i^i  C )  =  (/) )
64, 5sylancom 416 . 2  |-  ( ( F : A --> B  /\  ( B  i^i  C )  =  (/) )  ->  ( dom  `' F  i^i  C )  =  (/) )
7 imadisj 4901 . 2  |-  ( ( `' F " C )  =  (/)  <->  ( dom  `' F  i^i  C )  =  (/) )
86, 7sylibr 133 1  |-  ( ( F : A --> B  /\  ( B  i^i  C )  =  (/) )  ->  ( `' F " C )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    i^i cin 3070    C_ wss 3071   (/)c0 3363   `'ccnv 4538   dom cdm 4539   ran crn 4540   "cima 4542   -->wf 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-xp 4545  df-cnv 4547  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-f 5127
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator