ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimacnvdisj Unicode version

Theorem fimacnvdisj 5372
Description: The preimage of a class disjoint with a mapping's codomain is empty. (Contributed by FL, 24-Jan-2007.)
Assertion
Ref Expression
fimacnvdisj  |-  ( ( F : A --> B  /\  ( B  i^i  C )  =  (/) )  ->  ( `' F " C )  =  (/) )

Proof of Theorem fimacnvdisj
StepHypRef Expression
1 df-rn 4615 . . . 4  |-  ran  F  =  dom  `' F
2 frn 5346 . . . . 5  |-  ( F : A --> B  ->  ran  F  C_  B )
32adantr 274 . . . 4  |-  ( ( F : A --> B  /\  ( B  i^i  C )  =  (/) )  ->  ran  F 
C_  B )
41, 3eqsstrrid 3189 . . 3  |-  ( ( F : A --> B  /\  ( B  i^i  C )  =  (/) )  ->  dom  `' F  C_  B )
5 ssdisj 3465 . . 3  |-  ( ( dom  `' F  C_  B  /\  ( B  i^i  C )  =  (/) )  -> 
( dom  `' F  i^i  C )  =  (/) )
64, 5sylancom 417 . 2  |-  ( ( F : A --> B  /\  ( B  i^i  C )  =  (/) )  ->  ( dom  `' F  i^i  C )  =  (/) )
7 imadisj 4966 . 2  |-  ( ( `' F " C )  =  (/)  <->  ( dom  `' F  i^i  C )  =  (/) )
86, 7sylibr 133 1  |-  ( ( F : A --> B  /\  ( B  i^i  C )  =  (/) )  ->  ( `' F " C )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    i^i cin 3115    C_ wss 3116   (/)c0 3409   `'ccnv 4603   dom cdm 4604   ran crn 4605   "cima 4607   -->wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-f 5192
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator