ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimacnvdisj Unicode version

Theorem fimacnvdisj 5401
Description: The preimage of a class disjoint with a mapping's codomain is empty. (Contributed by FL, 24-Jan-2007.)
Assertion
Ref Expression
fimacnvdisj  |-  ( ( F : A --> B  /\  ( B  i^i  C )  =  (/) )  ->  ( `' F " C )  =  (/) )

Proof of Theorem fimacnvdisj
StepHypRef Expression
1 df-rn 4638 . . . 4  |-  ran  F  =  dom  `' F
2 frn 5375 . . . . 5  |-  ( F : A --> B  ->  ran  F  C_  B )
32adantr 276 . . . 4  |-  ( ( F : A --> B  /\  ( B  i^i  C )  =  (/) )  ->  ran  F 
C_  B )
41, 3eqsstrrid 3203 . . 3  |-  ( ( F : A --> B  /\  ( B  i^i  C )  =  (/) )  ->  dom  `' F  C_  B )
5 ssdisj 3480 . . 3  |-  ( ( dom  `' F  C_  B  /\  ( B  i^i  C )  =  (/) )  -> 
( dom  `' F  i^i  C )  =  (/) )
64, 5sylancom 420 . 2  |-  ( ( F : A --> B  /\  ( B  i^i  C )  =  (/) )  ->  ( dom  `' F  i^i  C )  =  (/) )
7 imadisj 4991 . 2  |-  ( ( `' F " C )  =  (/)  <->  ( dom  `' F  i^i  C )  =  (/) )
86, 7sylibr 134 1  |-  ( ( F : A --> B  /\  ( B  i^i  C )  =  (/) )  ->  ( `' F " C )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    i^i cin 3129    C_ wss 3130   (/)c0 3423   `'ccnv 4626   dom cdm 4627   ran crn 4628   "cima 4630   -->wf 5213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-xp 4633  df-cnv 4635  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-f 5221
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator