ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimacnv Unicode version

Theorem fimacnv 5764
Description: The preimage of the codomain of a mapping is the mapping's domain. (Contributed by FL, 25-Jan-2007.)
Assertion
Ref Expression
fimacnv  |-  ( F : A --> B  -> 
( `' F " B )  =  A )

Proof of Theorem fimacnv
StepHypRef Expression
1 imassrn 5079 . . 3  |-  ( `' F " B ) 
C_  ran  `' F
2 dfdm4 4915 . . . 4  |-  dom  F  =  ran  `' F
3 fdm 5479 . . . . 5  |-  ( F : A --> B  ->  dom  F  =  A )
4 ssid 3244 . . . . 5  |-  A  C_  A
53, 4eqsstrdi 3276 . . . 4  |-  ( F : A --> B  ->  dom  F  C_  A )
62, 5eqsstrrid 3271 . . 3  |-  ( F : A --> B  ->  ran  `' F  C_  A )
71, 6sstrid 3235 . 2  |-  ( F : A --> B  -> 
( `' F " B )  C_  A
)
8 imassrn 5079 . . . 4  |-  ( F
" A )  C_  ran  F
9 frn 5482 . . . 4  |-  ( F : A --> B  ->  ran  F  C_  B )
108, 9sstrid 3235 . . 3  |-  ( F : A --> B  -> 
( F " A
)  C_  B )
11 ffun 5476 . . . 4  |-  ( F : A --> B  ->  Fun  F )
124, 3sseqtrrid 3275 . . . 4  |-  ( F : A --> B  ->  A  C_  dom  F )
13 funimass3 5751 . . . 4  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A 
C_  ( `' F " B ) ) )
1411, 12, 13syl2anc 411 . . 3  |-  ( F : A --> B  -> 
( ( F " A )  C_  B  <->  A 
C_  ( `' F " B ) ) )
1510, 14mpbid 147 . 2  |-  ( F : A --> B  ->  A  C_  ( `' F " B ) )
167, 15eqssd 3241 1  |-  ( F : A --> B  -> 
( `' F " B )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    C_ wss 3197   `'ccnv 4718   dom cdm 4719   ran crn 4720   "cima 4722   Fun wfun 5312   -->wf 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326
This theorem is referenced by:  fmpt  5785  nn0supp  9421  cnclima  14897
  Copyright terms: Public domain W3C validator