ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimacnv Unicode version

Theorem fimacnv 5593
Description: The preimage of the codomain of a mapping is the mapping's domain. (Contributed by FL, 25-Jan-2007.)
Assertion
Ref Expression
fimacnv  |-  ( F : A --> B  -> 
( `' F " B )  =  A )

Proof of Theorem fimacnv
StepHypRef Expression
1 imassrn 4936 . . 3  |-  ( `' F " B ) 
C_  ran  `' F
2 dfdm4 4775 . . . 4  |-  dom  F  =  ran  `' F
3 fdm 5322 . . . . 5  |-  ( F : A --> B  ->  dom  F  =  A )
4 ssid 3148 . . . . 5  |-  A  C_  A
53, 4eqsstrdi 3180 . . . 4  |-  ( F : A --> B  ->  dom  F  C_  A )
62, 5eqsstrrid 3175 . . 3  |-  ( F : A --> B  ->  ran  `' F  C_  A )
71, 6sstrid 3139 . 2  |-  ( F : A --> B  -> 
( `' F " B )  C_  A
)
8 imassrn 4936 . . . 4  |-  ( F
" A )  C_  ran  F
9 frn 5325 . . . 4  |-  ( F : A --> B  ->  ran  F  C_  B )
108, 9sstrid 3139 . . 3  |-  ( F : A --> B  -> 
( F " A
)  C_  B )
11 ffun 5319 . . . 4  |-  ( F : A --> B  ->  Fun  F )
124, 3sseqtrrid 3179 . . . 4  |-  ( F : A --> B  ->  A  C_  dom  F )
13 funimass3 5580 . . . 4  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A 
C_  ( `' F " B ) ) )
1411, 12, 13syl2anc 409 . . 3  |-  ( F : A --> B  -> 
( ( F " A )  C_  B  <->  A 
C_  ( `' F " B ) ) )
1510, 14mpbid 146 . 2  |-  ( F : A --> B  ->  A  C_  ( `' F " B ) )
167, 15eqssd 3145 1  |-  ( F : A --> B  -> 
( `' F " B )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1335    C_ wss 3102   `'ccnv 4582   dom cdm 4583   ran crn 4584   "cima 4586   Fun wfun 5161   -->wf 5163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-fv 5175
This theorem is referenced by:  fmpt  5614  nn0supp  9125  cnclima  12583
  Copyright terms: Public domain W3C validator