ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimacnv Unicode version

Theorem fimacnv 5711
Description: The preimage of the codomain of a mapping is the mapping's domain. (Contributed by FL, 25-Jan-2007.)
Assertion
Ref Expression
fimacnv  |-  ( F : A --> B  -> 
( `' F " B )  =  A )

Proof of Theorem fimacnv
StepHypRef Expression
1 imassrn 5034 . . 3  |-  ( `' F " B ) 
C_  ran  `' F
2 dfdm4 4871 . . . 4  |-  dom  F  =  ran  `' F
3 fdm 5433 . . . . 5  |-  ( F : A --> B  ->  dom  F  =  A )
4 ssid 3213 . . . . 5  |-  A  C_  A
53, 4eqsstrdi 3245 . . . 4  |-  ( F : A --> B  ->  dom  F  C_  A )
62, 5eqsstrrid 3240 . . 3  |-  ( F : A --> B  ->  ran  `' F  C_  A )
71, 6sstrid 3204 . 2  |-  ( F : A --> B  -> 
( `' F " B )  C_  A
)
8 imassrn 5034 . . . 4  |-  ( F
" A )  C_  ran  F
9 frn 5436 . . . 4  |-  ( F : A --> B  ->  ran  F  C_  B )
108, 9sstrid 3204 . . 3  |-  ( F : A --> B  -> 
( F " A
)  C_  B )
11 ffun 5430 . . . 4  |-  ( F : A --> B  ->  Fun  F )
124, 3sseqtrrid 3244 . . . 4  |-  ( F : A --> B  ->  A  C_  dom  F )
13 funimass3 5698 . . . 4  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A 
C_  ( `' F " B ) ) )
1411, 12, 13syl2anc 411 . . 3  |-  ( F : A --> B  -> 
( ( F " A )  C_  B  <->  A 
C_  ( `' F " B ) ) )
1510, 14mpbid 147 . 2  |-  ( F : A --> B  ->  A  C_  ( `' F " B ) )
167, 15eqssd 3210 1  |-  ( F : A --> B  -> 
( `' F " B )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    C_ wss 3166   `'ccnv 4675   dom cdm 4676   ran crn 4677   "cima 4679   Fun wfun 5266   -->wf 5268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280
This theorem is referenced by:  fmpt  5732  nn0supp  9349  cnclima  14728
  Copyright terms: Public domain W3C validator