ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ompt Unicode version

Theorem f1ompt 5663
Description: Express bijection for a mapping operation. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by Mario Carneiro, 4-Dec-2016.)
Hypothesis
Ref Expression
fmpt.1  |-  F  =  ( x  e.  A  |->  C )
Assertion
Ref Expression
f1ompt  |-  ( F : A -1-1-onto-> B  <->  ( A. x  e.  A  C  e.  B  /\  A. y  e.  B  E! x  e.  A  y  =  C ) )
Distinct variable groups:    x, y, A   
x, B, y    y, C    y, F
Allowed substitution hints:    C( x)    F( x)

Proof of Theorem f1ompt
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ffn 5361 . . . . 5  |-  ( F : A --> B  ->  F  Fn  A )
2 dff1o4 5465 . . . . . 6  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  `' F  Fn  B ) )
32baib 919 . . . . 5  |-  ( F  Fn  A  ->  ( F : A -1-1-onto-> B  <->  `' F  Fn  B
) )
41, 3syl 14 . . . 4  |-  ( F : A --> B  -> 
( F : A -1-1-onto-> B  <->  `' F  Fn  B ) )
5 fnres 5328 . . . . . 6  |-  ( ( `' F  |`  B )  Fn  B  <->  A. y  e.  B  E! z 
y `' F z )
6 nfcv 2319 . . . . . . . . . 10  |-  F/_ x
z
7 fmpt.1 . . . . . . . . . . 11  |-  F  =  ( x  e.  A  |->  C )
8 nfmpt1 4093 . . . . . . . . . . 11  |-  F/_ x
( x  e.  A  |->  C )
97, 8nfcxfr 2316 . . . . . . . . . 10  |-  F/_ x F
10 nfcv 2319 . . . . . . . . . 10  |-  F/_ x
y
116, 9, 10nfbr 4046 . . . . . . . . 9  |-  F/ x  z F y
12 nfv 1528 . . . . . . . . 9  |-  F/ z ( x  e.  A  /\  y  =  C
)
13 breq1 4003 . . . . . . . . . 10  |-  ( z  =  x  ->  (
z F y  <->  x F
y ) )
14 df-mpt 4063 . . . . . . . . . . . . 13  |-  ( x  e.  A  |->  C )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }
157, 14eqtri 2198 . . . . . . . . . . . 12  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) }
1615breqi 4006 . . . . . . . . . . 11  |-  ( x F y  <->  x { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) } y )
17 df-br 4001 . . . . . . . . . . . 12  |-  ( x { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) } y  <->  <. x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) } )
18 opabid 4254 . . . . . . . . . . . 12  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) }  <->  ( x  e.  A  /\  y  =  C ) )
1917, 18bitri 184 . . . . . . . . . . 11  |-  ( x { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) } y  <-> 
( x  e.  A  /\  y  =  C
) )
2016, 19bitri 184 . . . . . . . . . 10  |-  ( x F y  <->  ( x  e.  A  /\  y  =  C ) )
2113, 20bitrdi 196 . . . . . . . . 9  |-  ( z  =  x  ->  (
z F y  <->  ( x  e.  A  /\  y  =  C ) ) )
2211, 12, 21cbveu 2050 . . . . . . . 8  |-  ( E! z  z F y  <-> 
E! x ( x  e.  A  /\  y  =  C ) )
23 vex 2740 . . . . . . . . . 10  |-  y  e. 
_V
24 vex 2740 . . . . . . . . . 10  |-  z  e. 
_V
2523, 24brcnv 4806 . . . . . . . . 9  |-  ( y `' F z  <->  z F
y )
2625eubii 2035 . . . . . . . 8  |-  ( E! z  y `' F
z  <->  E! z  z F y )
27 df-reu 2462 . . . . . . . 8  |-  ( E! x  e.  A  y  =  C  <->  E! x
( x  e.  A  /\  y  =  C
) )
2822, 26, 273bitr4i 212 . . . . . . 7  |-  ( E! z  y `' F
z  <->  E! x  e.  A  y  =  C )
2928ralbii 2483 . . . . . 6  |-  ( A. y  e.  B  E! z  y `' F
z  <->  A. y  e.  B  E! x  e.  A  y  =  C )
305, 29bitri 184 . . . . 5  |-  ( ( `' F  |`  B )  Fn  B  <->  A. y  e.  B  E! x  e.  A  y  =  C )
31 relcnv 5002 . . . . . . 7  |-  Rel  `' F
32 df-rn 4634 . . . . . . . 8  |-  ran  F  =  dom  `' F
33 frn 5370 . . . . . . . 8  |-  ( F : A --> B  ->  ran  F  C_  B )
3432, 33eqsstrrid 3202 . . . . . . 7  |-  ( F : A --> B  ->  dom  `' F  C_  B )
35 relssres 4941 . . . . . . 7  |-  ( ( Rel  `' F  /\  dom  `' F  C_  B )  ->  ( `' F  |`  B )  =  `' F )
3631, 34, 35sylancr 414 . . . . . 6  |-  ( F : A --> B  -> 
( `' F  |`  B )  =  `' F )
3736fneq1d 5302 . . . . 5  |-  ( F : A --> B  -> 
( ( `' F  |`  B )  Fn  B  <->  `' F  Fn  B ) )
3830, 37bitr3id 194 . . . 4  |-  ( F : A --> B  -> 
( A. y  e.  B  E! x  e.  A  y  =  C  <->  `' F  Fn  B
) )
394, 38bitr4d 191 . . 3  |-  ( F : A --> B  -> 
( F : A -1-1-onto-> B  <->  A. y  e.  B  E! x  e.  A  y  =  C ) )
4039pm5.32i 454 . 2  |-  ( ( F : A --> B  /\  F : A -1-1-onto-> B )  <->  ( F : A --> B  /\  A. y  e.  B  E! x  e.  A  y  =  C ) )
41 f1of 5457 . . 3  |-  ( F : A -1-1-onto-> B  ->  F : A
--> B )
4241pm4.71ri 392 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F : A
--> B  /\  F : A
-1-1-onto-> B ) )
437fmpt 5662 . . 3  |-  ( A. x  e.  A  C  e.  B  <->  F : A --> B )
4443anbi1i 458 . 2  |-  ( ( A. x  e.  A  C  e.  B  /\  A. y  e.  B  E! x  e.  A  y  =  C )  <->  ( F : A --> B  /\  A. y  e.  B  E! x  e.  A  y  =  C ) )
4540, 42, 443bitr4i 212 1  |-  ( F : A -1-1-onto-> B  <->  ( A. x  e.  A  C  e.  B  /\  A. y  e.  B  E! x  e.  A  y  =  C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353   E!weu 2026    e. wcel 2148   A.wral 2455   E!wreu 2457    C_ wss 3129   <.cop 3594   class class class wbr 4000   {copab 4060    |-> cmpt 4061   `'ccnv 4622   dom cdm 4623   ran crn 4624    |` cres 4625   Rel wrel 4628    Fn wfn 5207   -->wf 5208   -1-1-onto->wf1o 5211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220
This theorem is referenced by:  xpf1o  6838  icoshftf1o  9978
  Copyright terms: Public domain W3C validator