| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ompt | Unicode version | ||
| Description: Express bijection for a mapping operation. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by Mario Carneiro, 4-Dec-2016.) |
| Ref | Expression |
|---|---|
| fmpt.1 |
|
| Ref | Expression |
|---|---|
| f1ompt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5473 |
. . . . 5
| |
| 2 | dff1o4 5580 |
. . . . . 6
| |
| 3 | 2 | baib 924 |
. . . . 5
|
| 4 | 1, 3 | syl 14 |
. . . 4
|
| 5 | fnres 5440 |
. . . . . 6
| |
| 6 | nfcv 2372 |
. . . . . . . . . 10
| |
| 7 | fmpt.1 |
. . . . . . . . . . 11
| |
| 8 | nfmpt1 4177 |
. . . . . . . . . . 11
| |
| 9 | 7, 8 | nfcxfr 2369 |
. . . . . . . . . 10
|
| 10 | nfcv 2372 |
. . . . . . . . . 10
| |
| 11 | 6, 9, 10 | nfbr 4130 |
. . . . . . . . 9
|
| 12 | nfv 1574 |
. . . . . . . . 9
| |
| 13 | breq1 4086 |
. . . . . . . . . 10
| |
| 14 | df-mpt 4147 |
. . . . . . . . . . . . 13
| |
| 15 | 7, 14 | eqtri 2250 |
. . . . . . . . . . . 12
|
| 16 | 15 | breqi 4089 |
. . . . . . . . . . 11
|
| 17 | df-br 4084 |
. . . . . . . . . . . 12
| |
| 18 | opabid 4344 |
. . . . . . . . . . . 12
| |
| 19 | 17, 18 | bitri 184 |
. . . . . . . . . . 11
|
| 20 | 16, 19 | bitri 184 |
. . . . . . . . . 10
|
| 21 | 13, 20 | bitrdi 196 |
. . . . . . . . 9
|
| 22 | 11, 12, 21 | cbveu 2101 |
. . . . . . . 8
|
| 23 | vex 2802 |
. . . . . . . . . 10
| |
| 24 | vex 2802 |
. . . . . . . . . 10
| |
| 25 | 23, 24 | brcnv 4905 |
. . . . . . . . 9
|
| 26 | 25 | eubii 2086 |
. . . . . . . 8
|
| 27 | df-reu 2515 |
. . . . . . . 8
| |
| 28 | 22, 26, 27 | 3bitr4i 212 |
. . . . . . 7
|
| 29 | 28 | ralbii 2536 |
. . . . . 6
|
| 30 | 5, 29 | bitri 184 |
. . . . 5
|
| 31 | relcnv 5106 |
. . . . . . 7
| |
| 32 | df-rn 4730 |
. . . . . . . 8
| |
| 33 | frn 5482 |
. . . . . . . 8
| |
| 34 | 32, 33 | eqsstrrid 3271 |
. . . . . . 7
|
| 35 | relssres 5043 |
. . . . . . 7
| |
| 36 | 31, 34, 35 | sylancr 414 |
. . . . . 6
|
| 37 | 36 | fneq1d 5411 |
. . . . 5
|
| 38 | 30, 37 | bitr3id 194 |
. . . 4
|
| 39 | 4, 38 | bitr4d 191 |
. . 3
|
| 40 | 39 | pm5.32i 454 |
. 2
|
| 41 | f1of 5572 |
. . 3
| |
| 42 | 41 | pm4.71ri 392 |
. 2
|
| 43 | 7 | fmpt 5785 |
. . 3
|
| 44 | 43 | anbi1i 458 |
. 2
|
| 45 | 40, 42, 44 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 |
| This theorem is referenced by: xpf1o 7005 icoshftf1o 10187 |
| Copyright terms: Public domain | W3C validator |