Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1ompt | Unicode version |
Description: Express bijection for a mapping operation. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by Mario Carneiro, 4-Dec-2016.) |
Ref | Expression |
---|---|
fmpt.1 |
Ref | Expression |
---|---|
f1ompt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5337 | . . . . 5 | |
2 | dff1o4 5440 | . . . . . 6 | |
3 | 2 | baib 909 | . . . . 5 |
4 | 1, 3 | syl 14 | . . . 4 |
5 | fnres 5304 | . . . . . 6 | |
6 | nfcv 2308 | . . . . . . . . . 10 | |
7 | fmpt.1 | . . . . . . . . . . 11 | |
8 | nfmpt1 4075 | . . . . . . . . . . 11 | |
9 | 7, 8 | nfcxfr 2305 | . . . . . . . . . 10 |
10 | nfcv 2308 | . . . . . . . . . 10 | |
11 | 6, 9, 10 | nfbr 4028 | . . . . . . . . 9 |
12 | nfv 1516 | . . . . . . . . 9 | |
13 | breq1 3985 | . . . . . . . . . 10 | |
14 | df-mpt 4045 | . . . . . . . . . . . . 13 | |
15 | 7, 14 | eqtri 2186 | . . . . . . . . . . . 12 |
16 | 15 | breqi 3988 | . . . . . . . . . . 11 |
17 | df-br 3983 | . . . . . . . . . . . 12 | |
18 | opabid 4235 | . . . . . . . . . . . 12 | |
19 | 17, 18 | bitri 183 | . . . . . . . . . . 11 |
20 | 16, 19 | bitri 183 | . . . . . . . . . 10 |
21 | 13, 20 | bitrdi 195 | . . . . . . . . 9 |
22 | 11, 12, 21 | cbveu 2038 | . . . . . . . 8 |
23 | vex 2729 | . . . . . . . . . 10 | |
24 | vex 2729 | . . . . . . . . . 10 | |
25 | 23, 24 | brcnv 4787 | . . . . . . . . 9 |
26 | 25 | eubii 2023 | . . . . . . . 8 |
27 | df-reu 2451 | . . . . . . . 8 | |
28 | 22, 26, 27 | 3bitr4i 211 | . . . . . . 7 |
29 | 28 | ralbii 2472 | . . . . . 6 |
30 | 5, 29 | bitri 183 | . . . . 5 |
31 | relcnv 4982 | . . . . . . 7 | |
32 | df-rn 4615 | . . . . . . . 8 | |
33 | frn 5346 | . . . . . . . 8 | |
34 | 32, 33 | eqsstrrid 3189 | . . . . . . 7 |
35 | relssres 4922 | . . . . . . 7 | |
36 | 31, 34, 35 | sylancr 411 | . . . . . 6 |
37 | 36 | fneq1d 5278 | . . . . 5 |
38 | 30, 37 | bitr3id 193 | . . . 4 |
39 | 4, 38 | bitr4d 190 | . . 3 |
40 | 39 | pm5.32i 450 | . 2 |
41 | f1of 5432 | . . 3 | |
42 | 41 | pm4.71ri 390 | . 2 |
43 | 7 | fmpt 5635 | . . 3 |
44 | 43 | anbi1i 454 | . 2 |
45 | 40, 42, 44 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 weu 2014 wcel 2136 wral 2444 wreu 2446 wss 3116 cop 3579 class class class wbr 3982 copab 4042 cmpt 4043 ccnv 4603 cdm 4604 crn 4605 cres 4606 wrel 4609 wfn 5183 wf 5184 wf1o 5187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 |
This theorem is referenced by: xpf1o 6810 icoshftf1o 9927 |
Copyright terms: Public domain | W3C validator |