| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ompt | Unicode version | ||
| Description: Express bijection for a mapping operation. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by Mario Carneiro, 4-Dec-2016.) |
| Ref | Expression |
|---|---|
| fmpt.1 |
|
| Ref | Expression |
|---|---|
| f1ompt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5410 |
. . . . 5
| |
| 2 | dff1o4 5515 |
. . . . . 6
| |
| 3 | 2 | baib 920 |
. . . . 5
|
| 4 | 1, 3 | syl 14 |
. . . 4
|
| 5 | fnres 5377 |
. . . . . 6
| |
| 6 | nfcv 2339 |
. . . . . . . . . 10
| |
| 7 | fmpt.1 |
. . . . . . . . . . 11
| |
| 8 | nfmpt1 4127 |
. . . . . . . . . . 11
| |
| 9 | 7, 8 | nfcxfr 2336 |
. . . . . . . . . 10
|
| 10 | nfcv 2339 |
. . . . . . . . . 10
| |
| 11 | 6, 9, 10 | nfbr 4080 |
. . . . . . . . 9
|
| 12 | nfv 1542 |
. . . . . . . . 9
| |
| 13 | breq1 4037 |
. . . . . . . . . 10
| |
| 14 | df-mpt 4097 |
. . . . . . . . . . . . 13
| |
| 15 | 7, 14 | eqtri 2217 |
. . . . . . . . . . . 12
|
| 16 | 15 | breqi 4040 |
. . . . . . . . . . 11
|
| 17 | df-br 4035 |
. . . . . . . . . . . 12
| |
| 18 | opabid 4291 |
. . . . . . . . . . . 12
| |
| 19 | 17, 18 | bitri 184 |
. . . . . . . . . . 11
|
| 20 | 16, 19 | bitri 184 |
. . . . . . . . . 10
|
| 21 | 13, 20 | bitrdi 196 |
. . . . . . . . 9
|
| 22 | 11, 12, 21 | cbveu 2069 |
. . . . . . . 8
|
| 23 | vex 2766 |
. . . . . . . . . 10
| |
| 24 | vex 2766 |
. . . . . . . . . 10
| |
| 25 | 23, 24 | brcnv 4850 |
. . . . . . . . 9
|
| 26 | 25 | eubii 2054 |
. . . . . . . 8
|
| 27 | df-reu 2482 |
. . . . . . . 8
| |
| 28 | 22, 26, 27 | 3bitr4i 212 |
. . . . . . 7
|
| 29 | 28 | ralbii 2503 |
. . . . . 6
|
| 30 | 5, 29 | bitri 184 |
. . . . 5
|
| 31 | relcnv 5048 |
. . . . . . 7
| |
| 32 | df-rn 4675 |
. . . . . . . 8
| |
| 33 | frn 5419 |
. . . . . . . 8
| |
| 34 | 32, 33 | eqsstrrid 3231 |
. . . . . . 7
|
| 35 | relssres 4985 |
. . . . . . 7
| |
| 36 | 31, 34, 35 | sylancr 414 |
. . . . . 6
|
| 37 | 36 | fneq1d 5349 |
. . . . 5
|
| 38 | 30, 37 | bitr3id 194 |
. . . 4
|
| 39 | 4, 38 | bitr4d 191 |
. . 3
|
| 40 | 39 | pm5.32i 454 |
. 2
|
| 41 | f1of 5507 |
. . 3
| |
| 42 | 41 | pm4.71ri 392 |
. 2
|
| 43 | 7 | fmpt 5715 |
. . 3
|
| 44 | 43 | anbi1i 458 |
. 2
|
| 45 | 40, 42, 44 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 |
| This theorem is referenced by: xpf1o 6914 icoshftf1o 10083 |
| Copyright terms: Public domain | W3C validator |