Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1ompt | Unicode version |
Description: Express bijection for a mapping operation. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by Mario Carneiro, 4-Dec-2016.) |
Ref | Expression |
---|---|
fmpt.1 |
Ref | Expression |
---|---|
f1ompt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5347 | . . . . 5 | |
2 | dff1o4 5450 | . . . . . 6 | |
3 | 2 | baib 914 | . . . . 5 |
4 | 1, 3 | syl 14 | . . . 4 |
5 | fnres 5314 | . . . . . 6 | |
6 | nfcv 2312 | . . . . . . . . . 10 | |
7 | fmpt.1 | . . . . . . . . . . 11 | |
8 | nfmpt1 4082 | . . . . . . . . . . 11 | |
9 | 7, 8 | nfcxfr 2309 | . . . . . . . . . 10 |
10 | nfcv 2312 | . . . . . . . . . 10 | |
11 | 6, 9, 10 | nfbr 4035 | . . . . . . . . 9 |
12 | nfv 1521 | . . . . . . . . 9 | |
13 | breq1 3992 | . . . . . . . . . 10 | |
14 | df-mpt 4052 | . . . . . . . . . . . . 13 | |
15 | 7, 14 | eqtri 2191 | . . . . . . . . . . . 12 |
16 | 15 | breqi 3995 | . . . . . . . . . . 11 |
17 | df-br 3990 | . . . . . . . . . . . 12 | |
18 | opabid 4242 | . . . . . . . . . . . 12 | |
19 | 17, 18 | bitri 183 | . . . . . . . . . . 11 |
20 | 16, 19 | bitri 183 | . . . . . . . . . 10 |
21 | 13, 20 | bitrdi 195 | . . . . . . . . 9 |
22 | 11, 12, 21 | cbveu 2043 | . . . . . . . 8 |
23 | vex 2733 | . . . . . . . . . 10 | |
24 | vex 2733 | . . . . . . . . . 10 | |
25 | 23, 24 | brcnv 4794 | . . . . . . . . 9 |
26 | 25 | eubii 2028 | . . . . . . . 8 |
27 | df-reu 2455 | . . . . . . . 8 | |
28 | 22, 26, 27 | 3bitr4i 211 | . . . . . . 7 |
29 | 28 | ralbii 2476 | . . . . . 6 |
30 | 5, 29 | bitri 183 | . . . . 5 |
31 | relcnv 4989 | . . . . . . 7 | |
32 | df-rn 4622 | . . . . . . . 8 | |
33 | frn 5356 | . . . . . . . 8 | |
34 | 32, 33 | eqsstrrid 3194 | . . . . . . 7 |
35 | relssres 4929 | . . . . . . 7 | |
36 | 31, 34, 35 | sylancr 412 | . . . . . 6 |
37 | 36 | fneq1d 5288 | . . . . 5 |
38 | 30, 37 | bitr3id 193 | . . . 4 |
39 | 4, 38 | bitr4d 190 | . . 3 |
40 | 39 | pm5.32i 451 | . 2 |
41 | f1of 5442 | . . 3 | |
42 | 41 | pm4.71ri 390 | . 2 |
43 | 7 | fmpt 5646 | . . 3 |
44 | 43 | anbi1i 455 | . 2 |
45 | 40, 42, 44 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1348 weu 2019 wcel 2141 wral 2448 wreu 2450 wss 3121 cop 3586 class class class wbr 3989 copab 4049 cmpt 4050 ccnv 4610 cdm 4611 crn 4612 cres 4613 wrel 4616 wfn 5193 wf 5194 wf1o 5197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 |
This theorem is referenced by: xpf1o 6822 icoshftf1o 9948 |
Copyright terms: Public domain | W3C validator |