ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlemres Unicode version

Theorem tfr1onlemres 6402
Description: Lemma for tfr1on 6403. Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 18-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f  |-  F  = recs ( G )
tfr1on.g  |-  ( ph  ->  Fun  G )
tfr1on.x  |-  ( ph  ->  Ord  X )
tfr1on.ex  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
tfr1onlemsucfn.1  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
tfr1onlemres.u  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
tfr1onlemres.yx  |-  ( ph  ->  Y  e.  X )
Assertion
Ref Expression
tfr1onlemres  |-  ( ph  ->  Y  C_  dom  F )
Distinct variable groups:    x, A    f, G, x, y    f, X, x    f, Y, x    ph, f, x
Allowed substitution hints:    ph( y)    A( y,
f)    F( x, y, f)    X( y)    Y( y)

Proof of Theorem tfr1onlemres
Dummy variables  g  h  z  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfr1on.x . . . . . . . . . 10  |-  ( ph  ->  Ord  X )
21adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  Y )  ->  Ord  X )
3 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  Y )  ->  z  e.  Y )
4 tfr1onlemres.yx . . . . . . . . . . 11  |-  ( ph  ->  Y  e.  X )
54adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  Y )  ->  Y  e.  X )
63, 5jca 306 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  Y )  ->  (
z  e.  Y  /\  Y  e.  X )
)
7 ordtr1 4419 . . . . . . . . 9  |-  ( Ord 
X  ->  ( (
z  e.  Y  /\  Y  e.  X )  ->  z  e.  X ) )
82, 6, 7sylc 62 . . . . . . . 8  |-  ( (
ph  /\  z  e.  Y )  ->  z  e.  X )
9 tfr1on.f . . . . . . . . 9  |-  F  = recs ( G )
10 tfr1on.g . . . . . . . . 9  |-  ( ph  ->  Fun  G )
11 tfr1on.ex . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
12 tfr1onlemsucfn.1 . . . . . . . . 9  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
13 tfr1onlemres.u . . . . . . . . 9  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
149, 10, 1, 11, 12, 13tfr1onlemaccex 6401 . . . . . . . 8  |-  ( (
ph  /\  z  e.  X )  ->  E. g
( g  Fn  z  /\  A. u  e.  z  ( g `  u
)  =  ( G `
 ( g  |`  u ) ) ) )
158, 14syldan 282 . . . . . . 7  |-  ( (
ph  /\  z  e.  Y )  ->  E. g
( g  Fn  z  /\  A. u  e.  z  ( g `  u
)  =  ( G `
 ( g  |`  u ) ) ) )
1610ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  Y )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u
) ) ) )  ->  Fun  G )
171ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  Y )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u
) ) ) )  ->  Ord  X )
18113adant1r 1233 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  Y )  /\  x  e.  X  /\  f  Fn  x )  ->  ( G `  f )  e.  _V )
19183adant1r 1233 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  e.  Y )  /\  ( g  Fn  z  /\  A. u  e.  z  ( g `  u
)  =  ( G `
 ( g  |`  u ) ) ) )  /\  x  e.  X  /\  f  Fn  x )  ->  ( G `  f )  e.  _V )
204ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  Y )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u
) ) ) )  ->  Y  e.  X
)
213adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  Y )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u
) ) ) )  ->  z  e.  Y
)
2213adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  Y )  /\  x  e.  U. X )  ->  suc  x  e.  X )
2322adantlr 477 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  e.  Y )  /\  ( g  Fn  z  /\  A. u  e.  z  ( g `  u
)  =  ( G `
 ( g  |`  u ) ) ) )  /\  x  e. 
U. X )  ->  suc  x  e.  X )
24 simprl 529 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  Y )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u
) ) ) )  ->  g  Fn  z
)
25 fneq2 5343 . . . . . . . . . . . . 13  |-  ( w  =  z  ->  (
g  Fn  w  <->  g  Fn  z ) )
26 raleq 2690 . . . . . . . . . . . . 13  |-  ( w  =  z  ->  ( A. u  e.  w  ( g `  u
)  =  ( G `
 ( g  |`  u ) )  <->  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u ) ) ) )
2725, 26anbi12d 473 . . . . . . . . . . . 12  |-  ( w  =  z  ->  (
( g  Fn  w  /\  A. u  e.  w  ( g `  u
)  =  ( G `
 ( g  |`  u ) ) )  <-> 
( g  Fn  z  /\  A. u  e.  z  ( g `  u
)  =  ( G `
 ( g  |`  u ) ) ) ) )
2827rspcev 2864 . . . . . . . . . . 11  |-  ( ( z  e.  X  /\  ( g  Fn  z  /\  A. u  e.  z  ( g `  u
)  =  ( G `
 ( g  |`  u ) ) ) )  ->  E. w  e.  X  ( g  Fn  w  /\  A. u  e.  w  ( g `  u )  =  ( G `  ( g  |`  u ) ) ) )
298, 28sylan 283 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  Y )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u
) ) ) )  ->  E. w  e.  X  ( g  Fn  w  /\  A. u  e.  w  ( g `  u
)  =  ( G `
 ( g  |`  u ) ) ) )
30 vex 2763 . . . . . . . . . . 11  |-  g  e. 
_V
3112tfr1onlem3ag 6390 . . . . . . . . . . 11  |-  ( g  e.  _V  ->  (
g  e.  A  <->  E. w  e.  X  ( g  Fn  w  /\  A. u  e.  w  ( g `  u )  =  ( G `  ( g  |`  u ) ) ) ) )
3230, 31ax-mp 5 . . . . . . . . . 10  |-  ( g  e.  A  <->  E. w  e.  X  ( g  Fn  w  /\  A. u  e.  w  ( g `  u )  =  ( G `  ( g  |`  u ) ) ) )
3329, 32sylibr 134 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  Y )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u
) ) ) )  ->  g  e.  A
)
349, 16, 17, 19, 12, 20, 21, 23, 24, 33tfr1onlemsucaccv 6394 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  Y )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u
) ) ) )  ->  ( g  u. 
{ <. z ,  ( G `  g )
>. } )  e.  A
)
35 vex 2763 . . . . . . . . . . 11  |-  z  e. 
_V
36 fneq2 5343 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  (
g  Fn  x  <->  g  Fn  z ) )
3736imbi1d 231 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  (
( g  Fn  x  ->  ( G `  g
)  e.  _V )  <->  ( g  Fn  z  -> 
( G `  g
)  e.  _V )
) )
38113expia 1207 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  X )  ->  (
f  Fn  x  -> 
( G `  f
)  e.  _V )
)
3938alrimiv 1885 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  X )  ->  A. f
( f  Fn  x  ->  ( G `  f
)  e.  _V )
)
40 fneq1 5342 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  g  ->  (
f  Fn  x  <->  g  Fn  x ) )
41 fveq2 5554 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  =  g  ->  ( G `  f )  =  ( G `  g ) )
4241eleq1d 2262 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  g  ->  (
( G `  f
)  e.  _V  <->  ( G `  g )  e.  _V ) )
4340, 42imbi12d 234 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  g  ->  (
( f  Fn  x  ->  ( G `  f
)  e.  _V )  <->  ( g  Fn  x  -> 
( G `  g
)  e.  _V )
) )
4443spv 1871 . . . . . . . . . . . . . . . . 17  |-  ( A. f ( f  Fn  x  ->  ( G `  f )  e.  _V )  ->  ( g  Fn  x  ->  ( G `  g )  e.  _V ) )
4539, 44syl 14 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  X )  ->  (
g  Fn  x  -> 
( G `  g
)  e.  _V )
)
4645ralrimiva 2567 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. x  e.  X  ( g  Fn  x  ->  ( G `  g
)  e.  _V )
)
4746adantr 276 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z  e.  Y )  ->  A. x  e.  X  ( g  Fn  x  ->  ( G `
 g )  e. 
_V ) )
4837, 47, 8rspcdva 2869 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  Y )  ->  (
g  Fn  z  -> 
( G `  g
)  e.  _V )
)
4948imp 124 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  Y )  /\  g  Fn  z )  ->  ( G `  g )  e.  _V )
5024, 49syldan 282 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  Y )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u
) ) ) )  ->  ( G `  g )  e.  _V )
51 opexg 4257 . . . . . . . . . . 11  |-  ( ( z  e.  _V  /\  ( G `  g )  e.  _V )  ->  <. z ,  ( G `
 g ) >.  e.  _V )
5235, 50, 51sylancr 414 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  Y )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u
) ) ) )  ->  <. z ,  ( G `  g )
>.  e.  _V )
53 snidg 3647 . . . . . . . . . 10  |-  ( <.
z ,  ( G `
 g ) >.  e.  _V  ->  <. z ,  ( G `  g
) >.  e.  { <. z ,  ( G `  g ) >. } )
54 elun2 3327 . . . . . . . . . 10  |-  ( <.
z ,  ( G `
 g ) >.  e.  { <. z ,  ( G `  g )
>. }  ->  <. z ,  ( G `  g
) >.  e.  ( g  u.  { <. z ,  ( G `  g ) >. } ) )
5552, 53, 543syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  Y )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u
) ) ) )  ->  <. z ,  ( G `  g )
>.  e.  ( g  u. 
{ <. z ,  ( G `  g )
>. } ) )
56 opeldmg 4867 . . . . . . . . . 10  |-  ( ( z  e.  _V  /\  ( G `  g )  e.  _V )  -> 
( <. z ,  ( G `  g )
>.  e.  ( g  u. 
{ <. z ,  ( G `  g )
>. } )  ->  z  e.  dom  ( g  u. 
{ <. z ,  ( G `  g )
>. } ) ) )
5735, 50, 56sylancr 414 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  Y )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u
) ) ) )  ->  ( <. z ,  ( G `  g ) >.  e.  ( g  u.  { <. z ,  ( G `  g ) >. } )  ->  z  e.  dom  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) )
5855, 57mpd 13 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  Y )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u
) ) ) )  ->  z  e.  dom  ( g  u.  { <. z ,  ( G `
 g ) >. } ) )
59 dmeq 4862 . . . . . . . . . 10  |-  ( h  =  ( g  u. 
{ <. z ,  ( G `  g )
>. } )  ->  dom  h  =  dom  ( g  u.  { <. z ,  ( G `  g ) >. } ) )
6059eleq2d 2263 . . . . . . . . 9  |-  ( h  =  ( g  u. 
{ <. z ,  ( G `  g )
>. } )  ->  (
z  e.  dom  h  <->  z  e.  dom  ( g  u.  { <. z ,  ( G `  g ) >. } ) ) )
6160rspcev 2864 . . . . . . . 8  |-  ( ( ( g  u.  { <. z ,  ( G `
 g ) >. } )  e.  A  /\  z  e.  dom  ( g  u.  { <. z ,  ( G `
 g ) >. } ) )  ->  E. h  e.  A  z  e.  dom  h )
6234, 58, 61syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  Y )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u
) ) ) )  ->  E. h  e.  A  z  e.  dom  h )
6315, 62exlimddv 1910 . . . . . 6  |-  ( (
ph  /\  z  e.  Y )  ->  E. h  e.  A  z  e.  dom  h )
64 eliun 3916 . . . . . 6  |-  ( z  e.  U_ h  e.  A  dom  h  <->  E. h  e.  A  z  e.  dom  h )
6563, 64sylibr 134 . . . . 5  |-  ( (
ph  /\  z  e.  Y )  ->  z  e.  U_ h  e.  A  dom  h )
6665ex 115 . . . 4  |-  ( ph  ->  ( z  e.  Y  ->  z  e.  U_ h  e.  A  dom  h ) )
6766ssrdv 3185 . . 3  |-  ( ph  ->  Y  C_  U_ h  e.  A  dom  h )
68 dmuni 4872 . . . 4  |-  dom  U. A  =  U_ h  e.  A  dom  h
6912, 1tfr1onlemssrecs 6392 . . . . 5  |-  ( ph  ->  U. A  C_ recs ( G ) )
70 dmss 4861 . . . . 5  |-  ( U. A  C_ recs ( G )  ->  dom  U. A  C_  dom recs ( G ) )
7169, 70syl 14 . . . 4  |-  ( ph  ->  dom  U. A  C_  dom recs ( G ) )
7268, 71eqsstrrid 3226 . . 3  |-  ( ph  ->  U_ h  e.  A  dom  h  C_  dom recs ( G ) )
7367, 72sstrd 3189 . 2  |-  ( ph  ->  Y  C_  dom recs ( G ) )
749dmeqi 4863 . 2  |-  dom  F  =  dom recs ( G )
7573, 74sseqtrrdi 3228 1  |-  ( ph  ->  Y  C_  dom  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980   A.wal 1362    = wceq 1364   E.wex 1503    e. wcel 2164   {cab 2179   A.wral 2472   E.wrex 2473   _Vcvv 2760    u. cun 3151    C_ wss 3153   {csn 3618   <.cop 3621   U.cuni 3835   U_ciun 3912   Ord word 4393   suc csuc 4396   dom cdm 4659    |` cres 4661   Fun wfun 5248    Fn wfn 5249   ` cfv 5254  recscrecs 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-recs 6358
This theorem is referenced by:  tfr1on  6403
  Copyright terms: Public domain W3C validator