ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euabex Unicode version

Theorem euabex 4269
Description: The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994.)
Assertion
Ref Expression
euabex  |-  ( E! x ph  ->  { x  |  ph }  e.  _V )

Proof of Theorem euabex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 euabsn2 3702 . 2  |-  ( E! x ph  <->  E. y { x  |  ph }  =  { y } )
2 vex 2775 . . . . 5  |-  y  e. 
_V
32snex 4229 . . . 4  |-  { y }  e.  _V
4 eleq1 2268 . . . 4  |-  ( { x  |  ph }  =  { y }  ->  ( { x  |  ph }  e.  _V  <->  { y }  e.  _V )
)
53, 4mpbiri 168 . . 3  |-  ( { x  |  ph }  =  { y }  ->  { x  |  ph }  e.  _V )
65exlimiv 1621 . 2  |-  ( E. y { x  | 
ph }  =  {
y }  ->  { x  |  ph }  e.  _V )
71, 6sylbi 121 1  |-  ( E! x ph  ->  { x  |  ph }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   E.wex 1515   E!weu 2054    e. wcel 2176   {cab 2191   _Vcvv 2772   {csn 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator