ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mss Unicode version

Theorem mss 4259
Description: An inhabited class (even if proper) has an inhabited subset. (Contributed by Jim Kingdon, 17-Sep-2018.)
Assertion
Ref Expression
mss  |-  ( E. y  y  e.  A  ->  E. x ( x 
C_  A  /\  E. z  z  e.  x
) )
Distinct variable groups:    x, y    x, z    x, A, y
Allowed substitution hint:    A( z)

Proof of Theorem mss
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 vex 2766 . . . . 5  |-  y  e. 
_V
21snss 3757 . . . 4  |-  ( y  e.  A  <->  { y }  C_  A )
31snm 3742 . . . . 5  |-  E. w  w  e.  { y }
41snex 4218 . . . . . 6  |-  { y }  e.  _V
5 sseq1 3206 . . . . . . 7  |-  ( x  =  { y }  ->  ( x  C_  A 
<->  { y }  C_  A ) )
6 eleq2 2260 . . . . . . . 8  |-  ( x  =  { y }  ->  ( w  e.  x  <->  w  e.  { y } ) )
76exbidv 1839 . . . . . . 7  |-  ( x  =  { y }  ->  ( E. w  w  e.  x  <->  E. w  w  e.  { y } ) )
85, 7anbi12d 473 . . . . . 6  |-  ( x  =  { y }  ->  ( ( x 
C_  A  /\  E. w  w  e.  x
)  <->  ( { y }  C_  A  /\  E. w  w  e.  {
y } ) ) )
94, 8spcev 2859 . . . . 5  |-  ( ( { y }  C_  A  /\  E. w  w  e.  { y } )  ->  E. x
( x  C_  A  /\  E. w  w  e.  x ) )
103, 9mpan2 425 . . . 4  |-  ( { y }  C_  A  ->  E. x ( x 
C_  A  /\  E. w  w  e.  x
) )
112, 10sylbi 121 . . 3  |-  ( y  e.  A  ->  E. x
( x  C_  A  /\  E. w  w  e.  x ) )
1211exlimiv 1612 . 2  |-  ( E. y  y  e.  A  ->  E. x ( x 
C_  A  /\  E. w  w  e.  x
) )
13 elequ1 2171 . . . . 5  |-  ( z  =  w  ->  (
z  e.  x  <->  w  e.  x ) )
1413cbvexv 1933 . . . 4  |-  ( E. z  z  e.  x  <->  E. w  w  e.  x
)
1514anbi2i 457 . . 3  |-  ( ( x  C_  A  /\  E. z  z  e.  x
)  <->  ( x  C_  A  /\  E. w  w  e.  x ) )
1615exbii 1619 . 2  |-  ( E. x ( x  C_  A  /\  E. z  z  e.  x )  <->  E. x
( x  C_  A  /\  E. w  w  e.  x ) )
1712, 16sylibr 134 1  |-  ( E. y  y  e.  A  ->  E. x ( x 
C_  A  /\  E. z  z  e.  x
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1506    e. wcel 2167    C_ wss 3157   {csn 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator