ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mss Unicode version

Theorem mss 4220
Description: An inhabited class (even if proper) has an inhabited subset. (Contributed by Jim Kingdon, 17-Sep-2018.)
Assertion
Ref Expression
mss  |-  ( E. y  y  e.  A  ->  E. x ( x 
C_  A  /\  E. z  z  e.  x
) )
Distinct variable groups:    x, y    x, z    x, A, y
Allowed substitution hint:    A( z)

Proof of Theorem mss
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 vex 2738 . . . . 5  |-  y  e. 
_V
21snss 3724 . . . 4  |-  ( y  e.  A  <->  { y }  C_  A )
31snm 3709 . . . . 5  |-  E. w  w  e.  { y }
41snex 4180 . . . . . 6  |-  { y }  e.  _V
5 sseq1 3176 . . . . . . 7  |-  ( x  =  { y }  ->  ( x  C_  A 
<->  { y }  C_  A ) )
6 eleq2 2239 . . . . . . . 8  |-  ( x  =  { y }  ->  ( w  e.  x  <->  w  e.  { y } ) )
76exbidv 1823 . . . . . . 7  |-  ( x  =  { y }  ->  ( E. w  w  e.  x  <->  E. w  w  e.  { y } ) )
85, 7anbi12d 473 . . . . . 6  |-  ( x  =  { y }  ->  ( ( x 
C_  A  /\  E. w  w  e.  x
)  <->  ( { y }  C_  A  /\  E. w  w  e.  {
y } ) ) )
94, 8spcev 2830 . . . . 5  |-  ( ( { y }  C_  A  /\  E. w  w  e.  { y } )  ->  E. x
( x  C_  A  /\  E. w  w  e.  x ) )
103, 9mpan2 425 . . . 4  |-  ( { y }  C_  A  ->  E. x ( x 
C_  A  /\  E. w  w  e.  x
) )
112, 10sylbi 121 . . 3  |-  ( y  e.  A  ->  E. x
( x  C_  A  /\  E. w  w  e.  x ) )
1211exlimiv 1596 . 2  |-  ( E. y  y  e.  A  ->  E. x ( x 
C_  A  /\  E. w  w  e.  x
) )
13 elequ1 2150 . . . . 5  |-  ( z  =  w  ->  (
z  e.  x  <->  w  e.  x ) )
1413cbvexv 1916 . . . 4  |-  ( E. z  z  e.  x  <->  E. w  w  e.  x
)
1514anbi2i 457 . . 3  |-  ( ( x  C_  A  /\  E. z  z  e.  x
)  <->  ( x  C_  A  /\  E. w  w  e.  x ) )
1615exbii 1603 . 2  |-  ( E. x ( x  C_  A  /\  E. z  z  e.  x )  <->  E. x
( x  C_  A  /\  E. w  w  e.  x ) )
1712, 16sylibr 134 1  |-  ( E. y  y  e.  A  ->  E. x ( x 
C_  A  /\  E. z  z  e.  x
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   E.wex 1490    e. wcel 2146    C_ wss 3127   {csn 3589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator