ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mss Unicode version

Theorem mss 4278
Description: An inhabited class (even if proper) has an inhabited subset. (Contributed by Jim Kingdon, 17-Sep-2018.)
Assertion
Ref Expression
mss  |-  ( E. y  y  e.  A  ->  E. x ( x 
C_  A  /\  E. z  z  e.  x
) )
Distinct variable groups:    x, y    x, z    x, A, y
Allowed substitution hint:    A( z)

Proof of Theorem mss
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 vex 2776 . . . . 5  |-  y  e. 
_V
21snss 3774 . . . 4  |-  ( y  e.  A  <->  { y }  C_  A )
31snm 3758 . . . . 5  |-  E. w  w  e.  { y }
41snex 4237 . . . . . 6  |-  { y }  e.  _V
5 sseq1 3220 . . . . . . 7  |-  ( x  =  { y }  ->  ( x  C_  A 
<->  { y }  C_  A ) )
6 eleq2 2270 . . . . . . . 8  |-  ( x  =  { y }  ->  ( w  e.  x  <->  w  e.  { y } ) )
76exbidv 1849 . . . . . . 7  |-  ( x  =  { y }  ->  ( E. w  w  e.  x  <->  E. w  w  e.  { y } ) )
85, 7anbi12d 473 . . . . . 6  |-  ( x  =  { y }  ->  ( ( x 
C_  A  /\  E. w  w  e.  x
)  <->  ( { y }  C_  A  /\  E. w  w  e.  {
y } ) ) )
94, 8spcev 2872 . . . . 5  |-  ( ( { y }  C_  A  /\  E. w  w  e.  { y } )  ->  E. x
( x  C_  A  /\  E. w  w  e.  x ) )
103, 9mpan2 425 . . . 4  |-  ( { y }  C_  A  ->  E. x ( x 
C_  A  /\  E. w  w  e.  x
) )
112, 10sylbi 121 . . 3  |-  ( y  e.  A  ->  E. x
( x  C_  A  /\  E. w  w  e.  x ) )
1211exlimiv 1622 . 2  |-  ( E. y  y  e.  A  ->  E. x ( x 
C_  A  /\  E. w  w  e.  x
) )
13 elequ1 2181 . . . . 5  |-  ( z  =  w  ->  (
z  e.  x  <->  w  e.  x ) )
1413cbvexv 1943 . . . 4  |-  ( E. z  z  e.  x  <->  E. w  w  e.  x
)
1514anbi2i 457 . . 3  |-  ( ( x  C_  A  /\  E. z  z  e.  x
)  <->  ( x  C_  A  /\  E. w  w  e.  x ) )
1615exbii 1629 . 2  |-  ( E. x ( x  C_  A  /\  E. z  z  e.  x )  <->  E. x
( x  C_  A  /\  E. w  w  e.  x ) )
1712, 16sylibr 134 1  |-  ( E. y  y  e.  A  ->  E. x ( x 
C_  A  /\  E. z  z  e.  x
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2177    C_ wss 3170   {csn 3638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator