ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euabsn2 Unicode version

Theorem euabsn2 3663
Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
euabsn2  |-  ( E! x ph  <->  E. y { x  |  ph }  =  { y } )
Distinct variable groups:    x, y    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem euabsn2
StepHypRef Expression
1 df-eu 2029 . 2  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
2 abeq1 2287 . . . 4  |-  ( { x  |  ph }  =  { y }  <->  A. x
( ph  <->  x  e.  { y } ) )
3 velsn 3611 . . . . . 6  |-  ( x  e.  { y }  <-> 
x  =  y )
43bibi2i 227 . . . . 5  |-  ( (
ph 
<->  x  e.  { y } )  <->  ( ph  <->  x  =  y ) )
54albii 1470 . . . 4  |-  ( A. x ( ph  <->  x  e.  { y } )  <->  A. x
( ph  <->  x  =  y
) )
62, 5bitri 184 . . 3  |-  ( { x  |  ph }  =  { y }  <->  A. x
( ph  <->  x  =  y
) )
76exbii 1605 . 2  |-  ( E. y { x  | 
ph }  =  {
y }  <->  E. y A. x ( ph  <->  x  =  y ) )
81, 7bitr4i 187 1  |-  ( E! x ph  <->  E. y { x  |  ph }  =  { y } )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1351    = wceq 1353   E.wex 1492   E!weu 2026    e. wcel 2148   {cab 2163   {csn 3594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-sn 3600
This theorem is referenced by:  euabsn  3664  reusn  3665  absneu  3666  uniintabim  3883  euabex  4227  nfvres  5550  eusvobj2  5863
  Copyright terms: Public domain W3C validator