| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euabsn2 | Unicode version | ||
| Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| euabsn2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2057 |
. 2
| |
| 2 | abeq1 2315 |
. . . 4
| |
| 3 | velsn 3650 |
. . . . . 6
| |
| 4 | 3 | bibi2i 227 |
. . . . 5
|
| 5 | 4 | albii 1493 |
. . . 4
|
| 6 | 2, 5 | bitri 184 |
. . 3
|
| 7 | 6 | exbii 1628 |
. 2
|
| 8 | 1, 7 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-sn 3639 |
| This theorem is referenced by: euabsn 3703 reusn 3704 absneu 3705 uniintabim 3922 euabex 4269 nfvres 5610 eusvobj2 5930 |
| Copyright terms: Public domain | W3C validator |