ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euabsn2 Unicode version

Theorem euabsn2 3687
Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
euabsn2  |-  ( E! x ph  <->  E. y { x  |  ph }  =  { y } )
Distinct variable groups:    x, y    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem euabsn2
StepHypRef Expression
1 df-eu 2045 . 2  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
2 abeq1 2303 . . . 4  |-  ( { x  |  ph }  =  { y }  <->  A. x
( ph  <->  x  e.  { y } ) )
3 velsn 3635 . . . . . 6  |-  ( x  e.  { y }  <-> 
x  =  y )
43bibi2i 227 . . . . 5  |-  ( (
ph 
<->  x  e.  { y } )  <->  ( ph  <->  x  =  y ) )
54albii 1481 . . . 4  |-  ( A. x ( ph  <->  x  e.  { y } )  <->  A. x
( ph  <->  x  =  y
) )
62, 5bitri 184 . . 3  |-  ( { x  |  ph }  =  { y }  <->  A. x
( ph  <->  x  =  y
) )
76exbii 1616 . 2  |-  ( E. y { x  | 
ph }  =  {
y }  <->  E. y A. x ( ph  <->  x  =  y ) )
81, 7bitr4i 187 1  |-  ( E! x ph  <->  E. y { x  |  ph }  =  { y } )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1362    = wceq 1364   E.wex 1503   E!weu 2042    e. wcel 2164   {cab 2179   {csn 3618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sn 3624
This theorem is referenced by:  euabsn  3688  reusn  3689  absneu  3690  uniintabim  3907  euabex  4254  nfvres  5588  eusvobj2  5904
  Copyright terms: Public domain W3C validator