ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euabsn2 Unicode version

Theorem euabsn2 3624
Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
euabsn2  |-  ( E! x ph  <->  E. y { x  |  ph }  =  { y } )
Distinct variable groups:    x, y    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem euabsn2
StepHypRef Expression
1 df-eu 2006 . 2  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
2 abeq1 2264 . . . 4  |-  ( { x  |  ph }  =  { y }  <->  A. x
( ph  <->  x  e.  { y } ) )
3 velsn 3573 . . . . . 6  |-  ( x  e.  { y }  <-> 
x  =  y )
43bibi2i 226 . . . . 5  |-  ( (
ph 
<->  x  e.  { y } )  <->  ( ph  <->  x  =  y ) )
54albii 1447 . . . 4  |-  ( A. x ( ph  <->  x  e.  { y } )  <->  A. x
( ph  <->  x  =  y
) )
62, 5bitri 183 . . 3  |-  ( { x  |  ph }  =  { y }  <->  A. x
( ph  <->  x  =  y
) )
76exbii 1582 . 2  |-  ( E. y { x  | 
ph }  =  {
y }  <->  E. y A. x ( ph  <->  x  =  y ) )
81, 7bitr4i 186 1  |-  ( E! x ph  <->  E. y { x  |  ph }  =  { y } )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   A.wal 1330    = wceq 1332   E.wex 1469   E!weu 2003    e. wcel 2125   {cab 2140   {csn 3556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-v 2711  df-sn 3562
This theorem is referenced by:  euabsn  3625  reusn  3626  absneu  3627  uniintabim  3840  euabex  4180  nfvres  5494  eusvobj2  5800
  Copyright terms: Public domain W3C validator