Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > euabsn2 | Unicode version |
Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
euabsn2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2006 | . 2 | |
2 | abeq1 2264 | . . . 4 | |
3 | velsn 3573 | . . . . . 6 | |
4 | 3 | bibi2i 226 | . . . . 5 |
5 | 4 | albii 1447 | . . . 4 |
6 | 2, 5 | bitri 183 | . . 3 |
7 | 6 | exbii 1582 | . 2 |
8 | 1, 7 | bitr4i 186 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wal 1330 wceq 1332 wex 1469 weu 2003 wcel 2125 cab 2140 csn 3556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-sn 3562 |
This theorem is referenced by: euabsn 3625 reusn 3626 absneu 3627 uniintabim 3840 euabex 4180 nfvres 5494 eusvobj2 5800 |
Copyright terms: Public domain | W3C validator |