| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euabex | GIF version | ||
| Description: The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| euabex | ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euabsn2 3707 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | |
| 2 | vex 2776 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 3 | 2 | snex 4237 | . . . 4 ⊢ {𝑦} ∈ V |
| 4 | eleq1 2269 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ({𝑥 ∣ 𝜑} ∈ V ↔ {𝑦} ∈ V)) | |
| 5 | 3, 4 | mpbiri 168 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → {𝑥 ∣ 𝜑} ∈ V) |
| 6 | 5 | exlimiv 1622 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → {𝑥 ∣ 𝜑} ∈ V) |
| 7 | 1, 6 | sylbi 121 | 1 ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∃wex 1516 ∃!weu 2055 ∈ wcel 2177 {cab 2192 Vcvv 2773 {csn 3638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |