ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euabex GIF version

Theorem euabex 4210
Description: The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994.)
Assertion
Ref Expression
euabex (∃!𝑥𝜑 → {𝑥𝜑} ∈ V)

Proof of Theorem euabex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 euabsn2 3652 . 2 (∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
2 vex 2733 . . . . 5 𝑦 ∈ V
32snex 4171 . . . 4 {𝑦} ∈ V
4 eleq1 2233 . . . 4 ({𝑥𝜑} = {𝑦} → ({𝑥𝜑} ∈ V ↔ {𝑦} ∈ V))
53, 4mpbiri 167 . . 3 ({𝑥𝜑} = {𝑦} → {𝑥𝜑} ∈ V)
65exlimiv 1591 . 2 (∃𝑦{𝑥𝜑} = {𝑦} → {𝑥𝜑} ∈ V)
71, 6sylbi 120 1 (∃!𝑥𝜑 → {𝑥𝜑} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wex 1485  ∃!weu 2019  wcel 2141  {cab 2156  Vcvv 2730  {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator