ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euabex GIF version

Theorem euabex 4254
Description: The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994.)
Assertion
Ref Expression
euabex (∃!𝑥𝜑 → {𝑥𝜑} ∈ V)

Proof of Theorem euabex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 euabsn2 3687 . 2 (∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
2 vex 2763 . . . . 5 𝑦 ∈ V
32snex 4214 . . . 4 {𝑦} ∈ V
4 eleq1 2256 . . . 4 ({𝑥𝜑} = {𝑦} → ({𝑥𝜑} ∈ V ↔ {𝑦} ∈ V))
53, 4mpbiri 168 . . 3 ({𝑥𝜑} = {𝑦} → {𝑥𝜑} ∈ V)
65exlimiv 1609 . 2 (∃𝑦{𝑥𝜑} = {𝑦} → {𝑥𝜑} ∈ V)
71, 6sylbi 121 1 (∃!𝑥𝜑 → {𝑥𝜑} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wex 1503  ∃!weu 2042  wcel 2164  {cab 2179  Vcvv 2760  {csn 3618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator