| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euabex | GIF version | ||
| Description: The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| euabex | ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euabsn2 3692 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | |
| 2 | vex 2766 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 3 | 2 | snex 4219 | . . . 4 ⊢ {𝑦} ∈ V |
| 4 | eleq1 2259 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ({𝑥 ∣ 𝜑} ∈ V ↔ {𝑦} ∈ V)) | |
| 5 | 3, 4 | mpbiri 168 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → {𝑥 ∣ 𝜑} ∈ V) |
| 6 | 5 | exlimiv 1612 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → {𝑥 ∣ 𝜑} ∈ V) |
| 7 | 1, 6 | sylbi 121 | 1 ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∃wex 1506 ∃!weu 2045 ∈ wcel 2167 {cab 2182 Vcvv 2763 {csn 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |