Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > euabex | GIF version |
Description: The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
euabex | ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euabsn2 3652 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | |
2 | vex 2733 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | 2 | snex 4171 | . . . 4 ⊢ {𝑦} ∈ V |
4 | eleq1 2233 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ({𝑥 ∣ 𝜑} ∈ V ↔ {𝑦} ∈ V)) | |
5 | 3, 4 | mpbiri 167 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → {𝑥 ∣ 𝜑} ∈ V) |
6 | 5 | exlimiv 1591 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → {𝑥 ∣ 𝜑} ∈ V) |
7 | 1, 6 | sylbi 120 | 1 ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∃wex 1485 ∃!weu 2019 ∈ wcel 2141 {cab 2156 Vcvv 2730 {csn 3583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |