ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euabex GIF version

Theorem euabex 4268
Description: The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994.)
Assertion
Ref Expression
euabex (∃!𝑥𝜑 → {𝑥𝜑} ∈ V)

Proof of Theorem euabex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 euabsn2 3701 . 2 (∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
2 vex 2774 . . . . 5 𝑦 ∈ V
32snex 4228 . . . 4 {𝑦} ∈ V
4 eleq1 2267 . . . 4 ({𝑥𝜑} = {𝑦} → ({𝑥𝜑} ∈ V ↔ {𝑦} ∈ V))
53, 4mpbiri 168 . . 3 ({𝑥𝜑} = {𝑦} → {𝑥𝜑} ∈ V)
65exlimiv 1620 . 2 (∃𝑦{𝑥𝜑} = {𝑦} → {𝑥𝜑} ∈ V)
71, 6sylbi 121 1 (∃!𝑥𝜑 → {𝑥𝜑} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wex 1514  ∃!weu 2053  wcel 2175  {cab 2190  Vcvv 2771  {csn 3632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator