ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  upxp Unicode version

Theorem upxp 13066
Description: Universal property of the Cartesian product considered as a categorical product in the category of sets. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
upxp.1  |-  P  =  ( 1st  |`  ( B  X.  C ) )
upxp.2  |-  Q  =  ( 2nd  |`  ( B  X.  C ) )
Assertion
Ref Expression
upxp  |-  ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  ->  E! h ( h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )
Distinct variable groups:    A, h    B, h    C, h    h, F   
h, G    D, h
Allowed substitution hints:    P( h)    Q( h)

Proof of Theorem upxp
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptexg 5721 . . . 4  |-  ( A  e.  D  ->  (
x  e.  A  |->  <.
( F `  x
) ,  ( G `
 x ) >.
)  e.  _V )
2 eueq 2901 . . . 4  |-  ( ( x  e.  A  |->  <.
( F `  x
) ,  ( G `
 x ) >.
)  e.  _V  <->  E! h  h  =  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x ) >. )
)
31, 2sylib 121 . . 3  |-  ( A  e.  D  ->  E! h  h  =  (
x  e.  A  |->  <.
( F `  x
) ,  ( G `
 x ) >.
) )
433ad2ant1 1013 . 2  |-  ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  ->  E! h  h  =  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. ) )
5 ffn 5347 . . . . . . . 8  |-  ( h : A --> ( B  X.  C )  ->  h  Fn  A )
653ad2ant1 1013 . . . . . . 7  |-  ( ( h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) )  ->  h  Fn  A )
76adantl 275 . . . . . 6  |-  ( ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  /\  ( h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  ->  h  Fn  A
)
8 ffvelrn 5629 . . . . . . . . . . . . 13  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( F `  x
)  e.  B )
9 ffvelrn 5629 . . . . . . . . . . . . 13  |-  ( ( G : A --> C  /\  x  e.  A )  ->  ( G `  x
)  e.  C )
10 opelxpi 4643 . . . . . . . . . . . . 13  |-  ( ( ( F `  x
)  e.  B  /\  ( G `  x )  e.  C )  ->  <. ( F `  x
) ,  ( G `
 x ) >.  e.  ( B  X.  C
) )
118, 9, 10syl2an 287 . . . . . . . . . . . 12  |-  ( ( ( F : A --> B  /\  x  e.  A
)  /\  ( G : A --> C  /\  x  e.  A ) )  ->  <. ( F `  x
) ,  ( G `
 x ) >.  e.  ( B  X.  C
) )
1211anandirs 588 . . . . . . . . . . 11  |-  ( ( ( F : A --> B  /\  G : A --> C )  /\  x  e.  A )  ->  <. ( F `  x ) ,  ( G `  x ) >.  e.  ( B  X.  C ) )
1312ralrimiva 2543 . . . . . . . . . 10  |-  ( ( F : A --> B  /\  G : A --> C )  ->  A. x  e.  A  <. ( F `  x
) ,  ( G `
 x ) >.  e.  ( B  X.  C
) )
14133adant1 1010 . . . . . . . . 9  |-  ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  ->  A. x  e.  A  <. ( F `  x
) ,  ( G `
 x ) >.  e.  ( B  X.  C
) )
15 eqid 2170 . . . . . . . . . 10  |-  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x ) >. )  =  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. )
1615fmpt 5646 . . . . . . . . 9  |-  ( A. x  e.  A  <. ( F `  x ) ,  ( G `  x ) >.  e.  ( B  X.  C )  <-> 
( x  e.  A  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) : A --> ( B  X.  C ) )
1714, 16sylib 121 . . . . . . . 8  |-  ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  ->  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. ) : A --> ( B  X.  C ) )
1817ffnd 5348 . . . . . . 7  |-  ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  ->  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. )  Fn  A
)
1918adantr 274 . . . . . 6  |-  ( ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  /\  ( h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  ->  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. )  Fn  A
)
20 xpss 4719 . . . . . . . . . . 11  |-  ( B  X.  C )  C_  ( _V  X.  _V )
21 ffvelrn 5629 . . . . . . . . . . 11  |-  ( ( h : A --> ( B  X.  C )  /\  z  e.  A )  ->  ( h `  z
)  e.  ( B  X.  C ) )
2220, 21sselid 3145 . . . . . . . . . 10  |-  ( ( h : A --> ( B  X.  C )  /\  z  e.  A )  ->  ( h `  z
)  e.  ( _V 
X.  _V ) )
23223ad2antl1 1154 . . . . . . . . 9  |-  ( ( ( h : A --> ( B  X.  C
)  /\  F  =  ( P  o.  h
)  /\  G  =  ( Q  o.  h
) )  /\  z  e.  A )  ->  (
h `  z )  e.  ( _V  X.  _V ) )
2423adantll 473 . . . . . . . 8  |-  ( ( ( ( A  e.  D  /\  F : A
--> B  /\  G : A
--> C )  /\  (
h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  /\  z  e.  A
)  ->  ( h `  z )  e.  ( _V  X.  _V )
)
25 fveq1 5495 . . . . . . . . . . . 12  |-  ( F  =  ( P  o.  h )  ->  ( F `  z )  =  ( ( P  o.  h ) `  z ) )
26 upxp.1 . . . . . . . . . . . . . 14  |-  P  =  ( 1st  |`  ( B  X.  C ) )
2726coeq1i 4770 . . . . . . . . . . . . 13  |-  ( P  o.  h )  =  ( ( 1st  |`  ( B  X.  C ) )  o.  h )
2827fveq1i 5497 . . . . . . . . . . . 12  |-  ( ( P  o.  h ) `
 z )  =  ( ( ( 1st  |`  ( B  X.  C
) )  o.  h
) `  z )
2925, 28eqtrdi 2219 . . . . . . . . . . 11  |-  ( F  =  ( P  o.  h )  ->  ( F `  z )  =  ( ( ( 1st  |`  ( B  X.  C ) )  o.  h ) `  z
) )
30293ad2ant2 1014 . . . . . . . . . 10  |-  ( ( h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) )  -> 
( F `  z
)  =  ( ( ( 1st  |`  ( B  X.  C ) )  o.  h ) `  z ) )
3130ad2antlr 486 . . . . . . . . 9  |-  ( ( ( ( A  e.  D  /\  F : A
--> B  /\  G : A
--> C )  /\  (
h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  /\  z  e.  A
)  ->  ( F `  z )  =  ( ( ( 1st  |`  ( B  X.  C ) )  o.  h ) `  z ) )
32 simpr1 998 . . . . . . . . . 10  |-  ( ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  /\  ( h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  ->  h : A --> ( B  X.  C
) )
33 fvco3 5567 . . . . . . . . . 10  |-  ( ( h : A --> ( B  X.  C )  /\  z  e.  A )  ->  ( ( ( 1st  |`  ( B  X.  C
) )  o.  h
) `  z )  =  ( ( 1st  |`  ( B  X.  C
) ) `  (
h `  z )
) )
3432, 33sylan 281 . . . . . . . . 9  |-  ( ( ( ( A  e.  D  /\  F : A
--> B  /\  G : A
--> C )  /\  (
h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  /\  z  e.  A
)  ->  ( (
( 1st  |`  ( B  X.  C ) )  o.  h ) `  z )  =  ( ( 1st  |`  ( B  X.  C ) ) `
 ( h `  z ) ) )
35213ad2antl1 1154 . . . . . . . . . . 11  |-  ( ( ( h : A --> ( B  X.  C
)  /\  F  =  ( P  o.  h
)  /\  G  =  ( Q  o.  h
) )  /\  z  e.  A )  ->  (
h `  z )  e.  ( B  X.  C
) )
3635adantll 473 . . . . . . . . . 10  |-  ( ( ( ( A  e.  D  /\  F : A
--> B  /\  G : A
--> C )  /\  (
h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  /\  z  e.  A
)  ->  ( h `  z )  e.  ( B  X.  C ) )
3736fvresd 5521 . . . . . . . . 9  |-  ( ( ( ( A  e.  D  /\  F : A
--> B  /\  G : A
--> C )  /\  (
h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  /\  z  e.  A
)  ->  ( ( 1st  |`  ( B  X.  C ) ) `  ( h `  z
) )  =  ( 1st `  ( h `
 z ) ) )
3831, 34, 373eqtrrd 2208 . . . . . . . 8  |-  ( ( ( ( A  e.  D  /\  F : A
--> B  /\  G : A
--> C )  /\  (
h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  /\  z  e.  A
)  ->  ( 1st `  ( h `  z
) )  =  ( F `  z ) )
39 fveq1 5495 . . . . . . . . . . . 12  |-  ( G  =  ( Q  o.  h )  ->  ( G `  z )  =  ( ( Q  o.  h ) `  z ) )
40 upxp.2 . . . . . . . . . . . . . 14  |-  Q  =  ( 2nd  |`  ( B  X.  C ) )
4140coeq1i 4770 . . . . . . . . . . . . 13  |-  ( Q  o.  h )  =  ( ( 2nd  |`  ( B  X.  C ) )  o.  h )
4241fveq1i 5497 . . . . . . . . . . . 12  |-  ( ( Q  o.  h ) `
 z )  =  ( ( ( 2nd  |`  ( B  X.  C
) )  o.  h
) `  z )
4339, 42eqtrdi 2219 . . . . . . . . . . 11  |-  ( G  =  ( Q  o.  h )  ->  ( G `  z )  =  ( ( ( 2nd  |`  ( B  X.  C ) )  o.  h ) `  z
) )
44433ad2ant3 1015 . . . . . . . . . 10  |-  ( ( h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) )  -> 
( G `  z
)  =  ( ( ( 2nd  |`  ( B  X.  C ) )  o.  h ) `  z ) )
4544ad2antlr 486 . . . . . . . . 9  |-  ( ( ( ( A  e.  D  /\  F : A
--> B  /\  G : A
--> C )  /\  (
h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  /\  z  e.  A
)  ->  ( G `  z )  =  ( ( ( 2nd  |`  ( B  X.  C ) )  o.  h ) `  z ) )
46 fvco3 5567 . . . . . . . . . 10  |-  ( ( h : A --> ( B  X.  C )  /\  z  e.  A )  ->  ( ( ( 2nd  |`  ( B  X.  C
) )  o.  h
) `  z )  =  ( ( 2nd  |`  ( B  X.  C
) ) `  (
h `  z )
) )
4732, 46sylan 281 . . . . . . . . 9  |-  ( ( ( ( A  e.  D  /\  F : A
--> B  /\  G : A
--> C )  /\  (
h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  /\  z  e.  A
)  ->  ( (
( 2nd  |`  ( B  X.  C ) )  o.  h ) `  z )  =  ( ( 2nd  |`  ( B  X.  C ) ) `
 ( h `  z ) ) )
4836fvresd 5521 . . . . . . . . 9  |-  ( ( ( ( A  e.  D  /\  F : A
--> B  /\  G : A
--> C )  /\  (
h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  /\  z  e.  A
)  ->  ( ( 2nd  |`  ( B  X.  C ) ) `  ( h `  z
) )  =  ( 2nd `  ( h `
 z ) ) )
4945, 47, 483eqtrrd 2208 . . . . . . . 8  |-  ( ( ( ( A  e.  D  /\  F : A
--> B  /\  G : A
--> C )  /\  (
h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  /\  z  e.  A
)  ->  ( 2nd `  ( h `  z
) )  =  ( G `  z ) )
50 eqopi 6151 . . . . . . . 8  |-  ( ( ( h `  z
)  e.  ( _V 
X.  _V )  /\  (
( 1st `  (
h `  z )
)  =  ( F `
 z )  /\  ( 2nd `  ( h `
 z ) )  =  ( G `  z ) ) )  ->  ( h `  z )  =  <. ( F `  z ) ,  ( G `  z ) >. )
5124, 38, 49, 50syl12anc 1231 . . . . . . 7  |-  ( ( ( ( A  e.  D  /\  F : A
--> B  /\  G : A
--> C )  /\  (
h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  /\  z  e.  A
)  ->  ( h `  z )  =  <. ( F `  z ) ,  ( G `  z ) >. )
52 fveq2 5496 . . . . . . . . 9  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
53 fveq2 5496 . . . . . . . . 9  |-  ( x  =  z  ->  ( G `  x )  =  ( G `  z ) )
5452, 53opeq12d 3773 . . . . . . . 8  |-  ( x  =  z  ->  <. ( F `  x ) ,  ( G `  x ) >.  =  <. ( F `  z ) ,  ( G `  z ) >. )
55 simpr 109 . . . . . . . 8  |-  ( ( ( ( A  e.  D  /\  F : A
--> B  /\  G : A
--> C )  /\  (
h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  /\  z  e.  A
)  ->  z  e.  A )
5651, 36eqeltrrd 2248 . . . . . . . 8  |-  ( ( ( ( A  e.  D  /\  F : A
--> B  /\  G : A
--> C )  /\  (
h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  /\  z  e.  A
)  ->  <. ( F `
 z ) ,  ( G `  z
) >.  e.  ( B  X.  C ) )
5715, 54, 55, 56fvmptd3 5589 . . . . . . 7  |-  ( ( ( ( A  e.  D  /\  F : A
--> B  /\  G : A
--> C )  /\  (
h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  /\  z  e.  A
)  ->  ( (
x  e.  A  |->  <.
( F `  x
) ,  ( G `
 x ) >.
) `  z )  =  <. ( F `  z ) ,  ( G `  z )
>. )
5851, 57eqtr4d 2206 . . . . . 6  |-  ( ( ( ( A  e.  D  /\  F : A
--> B  /\  G : A
--> C )  /\  (
h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  /\  z  e.  A
)  ->  ( h `  z )  =  ( ( x  e.  A  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) `  z )
)
597, 19, 58eqfnfvd 5596 . . . . 5  |-  ( ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  /\  ( h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  ->  h  =  ( x  e.  A  |->  <.
( F `  x
) ,  ( G `
 x ) >.
) )
6059ex 114 . . . 4  |-  ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  ->  ( ( h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) )  ->  h  =  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) )
61 ffn 5347 . . . . . . . . 9  |-  ( F : A --> B  ->  F  Fn  A )
62613ad2ant2 1014 . . . . . . . 8  |-  ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  ->  F  Fn  A
)
63 fo1st 6136 . . . . . . . . . . 11  |-  1st : _V -onto-> _V
64 fofn 5422 . . . . . . . . . . 11  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
6563, 64ax-mp 5 . . . . . . . . . 10  |-  1st  Fn  _V
66 ssv 3169 . . . . . . . . . 10  |-  ( B  X.  C )  C_  _V
67 fnssres 5311 . . . . . . . . . 10  |-  ( ( 1st  Fn  _V  /\  ( B  X.  C
)  C_  _V )  ->  ( 1st  |`  ( B  X.  C ) )  Fn  ( B  X.  C ) )
6865, 66, 67mp2an 424 . . . . . . . . 9  |-  ( 1st  |`  ( B  X.  C
) )  Fn  ( B  X.  C )
6917frnd 5357 . . . . . . . . 9  |-  ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  ->  ran  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x ) >. )  C_  ( B  X.  C
) )
70 fnco 5306 . . . . . . . . 9  |-  ( ( ( 1st  |`  ( B  X.  C ) )  Fn  ( B  X.  C )  /\  (
x  e.  A  |->  <.
( F `  x
) ,  ( G `
 x ) >.
)  Fn  A  /\  ran  ( x  e.  A  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
)  C_  ( B  X.  C ) )  -> 
( ( 1st  |`  ( B  X.  C ) )  o.  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. ) )  Fn  A
)
7168, 18, 69, 70mp3an2i 1337 . . . . . . . 8  |-  ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  ->  ( ( 1st  |`  ( B  X.  C
) )  o.  (
x  e.  A  |->  <.
( F `  x
) ,  ( G `
 x ) >.
) )  Fn  A
)
72 fvco3 5567 . . . . . . . . . 10  |-  ( ( ( x  e.  A  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) : A --> ( B  X.  C )  /\  z  e.  A )  ->  ( ( ( 1st  |`  ( B  X.  C
) )  o.  (
x  e.  A  |->  <.
( F `  x
) ,  ( G `
 x ) >.
) ) `  z
)  =  ( ( 1st  |`  ( B  X.  C ) ) `  ( ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. ) `  z ) ) )
7317, 72sylan 281 . . . . . . . . 9  |-  ( ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  /\  z  e.  A
)  ->  ( (
( 1st  |`  ( B  X.  C ) )  o.  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. ) ) `  z
)  =  ( ( 1st  |`  ( B  X.  C ) ) `  ( ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. ) `  z ) ) )
74 simpr 109 . . . . . . . . . . 11  |-  ( ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  /\  z  e.  A
)  ->  z  e.  A )
75 simpl2 996 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  /\  z  e.  A
)  ->  F : A
--> B )
7675, 74ffvelrnd 5632 . . . . . . . . . . . 12  |-  ( ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  /\  z  e.  A
)  ->  ( F `  z )  e.  B
)
77 simpl3 997 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  /\  z  e.  A
)  ->  G : A
--> C )
7877, 74ffvelrnd 5632 . . . . . . . . . . . 12  |-  ( ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  /\  z  e.  A
)  ->  ( G `  z )  e.  C
)
7976, 78opelxpd 4644 . . . . . . . . . . 11  |-  ( ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  /\  z  e.  A
)  ->  <. ( F `
 z ) ,  ( G `  z
) >.  e.  ( B  X.  C ) )
8015, 54, 74, 79fvmptd3 5589 . . . . . . . . . 10  |-  ( ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  /\  z  e.  A
)  ->  ( (
x  e.  A  |->  <.
( F `  x
) ,  ( G `
 x ) >.
) `  z )  =  <. ( F `  z ) ,  ( G `  z )
>. )
8180fveq2d 5500 . . . . . . . . 9  |-  ( ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  /\  z  e.  A
)  ->  ( ( 1st  |`  ( B  X.  C ) ) `  ( ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. ) `  z ) )  =  ( ( 1st  |`  ( B  X.  C ) ) `  <. ( F `  z
) ,  ( G `
 z ) >.
) )
82 ffvelrn 5629 . . . . . . . . . . . . . 14  |-  ( ( F : A --> B  /\  z  e.  A )  ->  ( F `  z
)  e.  B )
83 ffvelrn 5629 . . . . . . . . . . . . . 14  |-  ( ( G : A --> C  /\  z  e.  A )  ->  ( G `  z
)  e.  C )
84 opelxpi 4643 . . . . . . . . . . . . . 14  |-  ( ( ( F `  z
)  e.  B  /\  ( G `  z )  e.  C )  ->  <. ( F `  z
) ,  ( G `
 z ) >.  e.  ( B  X.  C
) )
8582, 83, 84syl2an 287 . . . . . . . . . . . . 13  |-  ( ( ( F : A --> B  /\  z  e.  A
)  /\  ( G : A --> C  /\  z  e.  A ) )  ->  <. ( F `  z
) ,  ( G `
 z ) >.  e.  ( B  X.  C
) )
8685anandirs 588 . . . . . . . . . . . 12  |-  ( ( ( F : A --> B  /\  G : A --> C )  /\  z  e.  A )  ->  <. ( F `  z ) ,  ( G `  z ) >.  e.  ( B  X.  C ) )
87863adantl1 1148 . . . . . . . . . . 11  |-  ( ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  /\  z  e.  A
)  ->  <. ( F `
 z ) ,  ( G `  z
) >.  e.  ( B  X.  C ) )
8887fvresd 5521 . . . . . . . . . 10  |-  ( ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  /\  z  e.  A
)  ->  ( ( 1st  |`  ( B  X.  C ) ) `  <. ( F `  z
) ,  ( G `
 z ) >.
)  =  ( 1st `  <. ( F `  z ) ,  ( G `  z )
>. ) )
89 op1stg 6129 . . . . . . . . . . 11  |-  ( ( ( F `  z
)  e.  B  /\  ( G `  z )  e.  C )  -> 
( 1st `  <. ( F `  z ) ,  ( G `  z ) >. )  =  ( F `  z ) )
9076, 78, 89syl2anc 409 . . . . . . . . . 10  |-  ( ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  /\  z  e.  A
)  ->  ( 1st ` 
<. ( F `  z
) ,  ( G `
 z ) >.
)  =  ( F `
 z ) )
9188, 90eqtrd 2203 . . . . . . . . 9  |-  ( ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  /\  z  e.  A
)  ->  ( ( 1st  |`  ( B  X.  C ) ) `  <. ( F `  z
) ,  ( G `
 z ) >.
)  =  ( F `
 z ) )
9273, 81, 913eqtrrd 2208 . . . . . . . 8  |-  ( ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  /\  z  e.  A
)  ->  ( F `  z )  =  ( ( ( 1st  |`  ( B  X.  C ) )  o.  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. ) ) `  z
) )
9362, 71, 92eqfnfvd 5596 . . . . . . 7  |-  ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  ->  F  =  ( ( 1st  |`  ( B  X.  C ) )  o.  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. ) ) )
9426coeq1i 4770 . . . . . . 7  |-  ( P  o.  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. ) )  =  ( ( 1st  |`  ( B  X.  C ) )  o.  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. ) )
9593, 94eqtr4di 2221 . . . . . 6  |-  ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  ->  F  =  ( P  o.  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) )
96 ffn 5347 . . . . . . . . 9  |-  ( G : A --> C  ->  G  Fn  A )
97963ad2ant3 1015 . . . . . . . 8  |-  ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  ->  G  Fn  A
)
98 fo2nd 6137 . . . . . . . . . . 11  |-  2nd : _V -onto-> _V
99 fofn 5422 . . . . . . . . . . 11  |-  ( 2nd
: _V -onto-> _V  ->  2nd 
Fn  _V )
10098, 99ax-mp 5 . . . . . . . . . 10  |-  2nd  Fn  _V
101 fnssres 5311 . . . . . . . . . 10  |-  ( ( 2nd  Fn  _V  /\  ( B  X.  C
)  C_  _V )  ->  ( 2nd  |`  ( B  X.  C ) )  Fn  ( B  X.  C ) )
102100, 66, 101mp2an 424 . . . . . . . . 9  |-  ( 2nd  |`  ( B  X.  C
) )  Fn  ( B  X.  C )
103 fnco 5306 . . . . . . . . 9  |-  ( ( ( 2nd  |`  ( B  X.  C ) )  Fn  ( B  X.  C )  /\  (
x  e.  A  |->  <.
( F `  x
) ,  ( G `
 x ) >.
)  Fn  A  /\  ran  ( x  e.  A  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
)  C_  ( B  X.  C ) )  -> 
( ( 2nd  |`  ( B  X.  C ) )  o.  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. ) )  Fn  A
)
104102, 18, 69, 103mp3an2i 1337 . . . . . . . 8  |-  ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  ->  ( ( 2nd  |`  ( B  X.  C
) )  o.  (
x  e.  A  |->  <.
( F `  x
) ,  ( G `
 x ) >.
) )  Fn  A
)
105 fvco3 5567 . . . . . . . . . 10  |-  ( ( ( x  e.  A  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) : A --> ( B  X.  C )  /\  z  e.  A )  ->  ( ( ( 2nd  |`  ( B  X.  C
) )  o.  (
x  e.  A  |->  <.
( F `  x
) ,  ( G `
 x ) >.
) ) `  z
)  =  ( ( 2nd  |`  ( B  X.  C ) ) `  ( ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. ) `  z ) ) )
10617, 105sylan 281 . . . . . . . . 9  |-  ( ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  /\  z  e.  A
)  ->  ( (
( 2nd  |`  ( B  X.  C ) )  o.  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. ) ) `  z
)  =  ( ( 2nd  |`  ( B  X.  C ) ) `  ( ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. ) `  z ) ) )
10780fveq2d 5500 . . . . . . . . 9  |-  ( ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  /\  z  e.  A
)  ->  ( ( 2nd  |`  ( B  X.  C ) ) `  ( ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. ) `  z ) )  =  ( ( 2nd  |`  ( B  X.  C ) ) `  <. ( F `  z
) ,  ( G `
 z ) >.
) )
10887fvresd 5521 . . . . . . . . . 10  |-  ( ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  /\  z  e.  A
)  ->  ( ( 2nd  |`  ( B  X.  C ) ) `  <. ( F `  z
) ,  ( G `
 z ) >.
)  =  ( 2nd `  <. ( F `  z ) ,  ( G `  z )
>. ) )
109 op2ndg 6130 . . . . . . . . . . 11  |-  ( ( ( F `  z
)  e.  B  /\  ( G `  z )  e.  C )  -> 
( 2nd `  <. ( F `  z ) ,  ( G `  z ) >. )  =  ( G `  z ) )
11076, 78, 109syl2anc 409 . . . . . . . . . 10  |-  ( ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  /\  z  e.  A
)  ->  ( 2nd ` 
<. ( F `  z
) ,  ( G `
 z ) >.
)  =  ( G `
 z ) )
111108, 110eqtrd 2203 . . . . . . . . 9  |-  ( ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  /\  z  e.  A
)  ->  ( ( 2nd  |`  ( B  X.  C ) ) `  <. ( F `  z
) ,  ( G `
 z ) >.
)  =  ( G `
 z ) )
112106, 107, 1113eqtrrd 2208 . . . . . . . 8  |-  ( ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  /\  z  e.  A
)  ->  ( G `  z )  =  ( ( ( 2nd  |`  ( B  X.  C ) )  o.  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. ) ) `  z
) )
11397, 104, 112eqfnfvd 5596 . . . . . . 7  |-  ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  ->  G  =  ( ( 2nd  |`  ( B  X.  C ) )  o.  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. ) ) )
11440coeq1i 4770 . . . . . . 7  |-  ( Q  o.  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. ) )  =  ( ( 2nd  |`  ( B  X.  C ) )  o.  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. ) )
115113, 114eqtr4di 2221 . . . . . 6  |-  ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  ->  G  =  ( Q  o.  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) )
11617, 95, 1153jca 1172 . . . . 5  |-  ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  ->  ( ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x ) >. ) : A --> ( B  X.  C )  /\  F  =  ( P  o.  ( x  e.  A  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) )  /\  G  =  ( Q  o.  ( x  e.  A  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) ) ) )
117 feq1 5330 . . . . . 6  |-  ( h  =  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. )  ->  ( h : A --> ( B  X.  C )  <->  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x ) >. ) : A --> ( B  X.  C ) ) )
118 coeq2 4769 . . . . . . 7  |-  ( h  =  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. )  ->  ( P  o.  h )  =  ( P  o.  (
x  e.  A  |->  <.
( F `  x
) ,  ( G `
 x ) >.
) ) )
119118eqeq2d 2182 . . . . . 6  |-  ( h  =  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. )  ->  ( F  =  ( P  o.  h )  <->  F  =  ( P  o.  (
x  e.  A  |->  <.
( F `  x
) ,  ( G `
 x ) >.
) ) ) )
120 coeq2 4769 . . . . . . 7  |-  ( h  =  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. )  ->  ( Q  o.  h )  =  ( Q  o.  (
x  e.  A  |->  <.
( F `  x
) ,  ( G `
 x ) >.
) ) )
121120eqeq2d 2182 . . . . . 6  |-  ( h  =  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. )  ->  ( G  =  ( Q  o.  h )  <->  G  =  ( Q  o.  (
x  e.  A  |->  <.
( F `  x
) ,  ( G `
 x ) >.
) ) ) )
122117, 119, 1213anbi123d 1307 . . . . 5  |-  ( h  =  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x )
>. )  ->  ( ( h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) )  <->  ( (
x  e.  A  |->  <.
( F `  x
) ,  ( G `
 x ) >.
) : A --> ( B  X.  C )  /\  F  =  ( P  o.  ( x  e.  A  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) )  /\  G  =  ( Q  o.  ( x  e.  A  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) ) ) ) )
123116, 122syl5ibrcom 156 . . . 4  |-  ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  ->  ( h  =  ( x  e.  A  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
)  ->  ( h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) ) )
12460, 123impbid 128 . . 3  |-  ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  ->  ( ( h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) )  <->  h  =  ( x  e.  A  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) ) )
125124eubidv 2027 . 2  |-  ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  ->  ( E! h
( h : A --> ( B  X.  C
)  /\  F  =  ( P  o.  h
)  /\  G  =  ( Q  o.  h
) )  <->  E! h  h  =  ( x  e.  A  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) )
1264, 125mpbird 166 1  |-  ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  ->  E! h ( h : A --> ( B  X.  C )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348   E!weu 2019    e. wcel 2141   A.wral 2448   _Vcvv 2730    C_ wss 3121   <.cop 3586    |-> cmpt 4050    X. cxp 4609   ran crn 4612    |` cres 4613    o. ccom 4615    Fn wfn 5193   -->wf 5194   -onto->wfo 5196   ` cfv 5198   1stc1st 6117   2ndc2nd 6118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120
This theorem is referenced by:  uptx  13068  txcn  13069
  Copyright terms: Public domain W3C validator