ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfveu Unicode version

Theorem funfveu 5612
Description: A function has one value given an argument in its domain. (Contributed by Jim Kingdon, 29-Dec-2018.)
Assertion
Ref Expression
funfveu  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  E! y  A F
y )
Distinct variable groups:    y, A    y, F

Proof of Theorem funfveu
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eleq1 2270 . . . . 5  |-  ( x  =  A  ->  (
x  e.  dom  F  <->  A  e.  dom  F ) )
21anbi2d 464 . . . 4  |-  ( x  =  A  ->  (
( Fun  F  /\  x  e.  dom  F )  <-> 
( Fun  F  /\  A  e.  dom  F ) ) )
3 breq1 4062 . . . . 5  |-  ( x  =  A  ->  (
x F y  <->  A F
y ) )
43eubidv 2063 . . . 4  |-  ( x  =  A  ->  ( E! y  x F
y  <->  E! y  A F y ) )
52, 4imbi12d 234 . . 3  |-  ( x  =  A  ->  (
( ( Fun  F  /\  x  e.  dom  F )  ->  E! y  x F y )  <->  ( ( Fun  F  /\  A  e. 
dom  F )  ->  E! y  A F
y ) ) )
6 dffun8 5318 . . . . 5  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x  e.  dom  F E! y  x F y ) )
76simprbi 275 . . . 4  |-  ( Fun 
F  ->  A. x  e.  dom  F E! y  x F y )
87r19.21bi 2596 . . 3  |-  ( ( Fun  F  /\  x  e.  dom  F )  ->  E! y  x F
y )
95, 8vtoclg 2838 . 2  |-  ( A  e.  dom  F  -> 
( ( Fun  F  /\  A  e.  dom  F )  ->  E! y  A F y ) )
109anabsi7 581 1  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  E! y  A F
y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E!weu 2055    e. wcel 2178   A.wral 2486   class class class wbr 4059   dom cdm 4693   Rel wrel 4698   Fun wfun 5284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-id 4358  df-cnv 4701  df-co 4702  df-dm 4703  df-fun 5292
This theorem is referenced by:  funfvex  5616
  Copyright terms: Public domain W3C validator