ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfveu Unicode version

Theorem funfveu 5589
Description: A function has one value given an argument in its domain. (Contributed by Jim Kingdon, 29-Dec-2018.)
Assertion
Ref Expression
funfveu  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  E! y  A F
y )
Distinct variable groups:    y, A    y, F

Proof of Theorem funfveu
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eleq1 2268 . . . . 5  |-  ( x  =  A  ->  (
x  e.  dom  F  <->  A  e.  dom  F ) )
21anbi2d 464 . . . 4  |-  ( x  =  A  ->  (
( Fun  F  /\  x  e.  dom  F )  <-> 
( Fun  F  /\  A  e.  dom  F ) ) )
3 breq1 4047 . . . . 5  |-  ( x  =  A  ->  (
x F y  <->  A F
y ) )
43eubidv 2062 . . . 4  |-  ( x  =  A  ->  ( E! y  x F
y  <->  E! y  A F y ) )
52, 4imbi12d 234 . . 3  |-  ( x  =  A  ->  (
( ( Fun  F  /\  x  e.  dom  F )  ->  E! y  x F y )  <->  ( ( Fun  F  /\  A  e. 
dom  F )  ->  E! y  A F
y ) ) )
6 dffun8 5299 . . . . 5  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x  e.  dom  F E! y  x F y ) )
76simprbi 275 . . . 4  |-  ( Fun 
F  ->  A. x  e.  dom  F E! y  x F y )
87r19.21bi 2594 . . 3  |-  ( ( Fun  F  /\  x  e.  dom  F )  ->  E! y  x F
y )
95, 8vtoclg 2833 . 2  |-  ( A  e.  dom  F  -> 
( ( Fun  F  /\  A  e.  dom  F )  ->  E! y  A F y ) )
109anabsi7 581 1  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  E! y  A F
y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E!weu 2054    e. wcel 2176   A.wral 2484   class class class wbr 4044   dom cdm 4675   Rel wrel 4680   Fun wfun 5265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-id 4340  df-cnv 4683  df-co 4684  df-dm 4685  df-fun 5273
This theorem is referenced by:  funfvex  5593
  Copyright terms: Public domain W3C validator