| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dedekindicc | Unicode version | ||
| Description: A Dedekind cut identifies a unique real number. Similar to df-inp 7614 except that the Dedekind cut is formed by sets of reals (rather than positive rationals). But in both cases the defining property of a Dedekind cut is that it is inhabited (bounded), rounded, disjoint, and located. (Contributed by Jim Kingdon, 19-Feb-2024.) |
| Ref | Expression |
|---|---|
| dedekindicc.a |
|
| dedekindicc.b |
|
| dedekindicc.lss |
|
| dedekindicc.uss |
|
| dedekindicc.lm |
|
| dedekindicc.um |
|
| dedekindicc.lr |
|
| dedekindicc.ur |
|
| dedekindicc.disj |
|
| dedekindicc.loc |
|
| dedekindicc.ab |
|
| Ref | Expression |
|---|---|
| dedekindicc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedekindicc.a |
. . . . 5
| |
| 2 | dedekindicc.b |
. . . . 5
| |
| 3 | dedekindicc.lss |
. . . . 5
| |
| 4 | dedekindicc.uss |
. . . . 5
| |
| 5 | dedekindicc.lm |
. . . . 5
| |
| 6 | dedekindicc.um |
. . . . 5
| |
| 7 | dedekindicc.lr |
. . . . 5
| |
| 8 | dedekindicc.ur |
. . . . 5
| |
| 9 | dedekindicc.disj |
. . . . 5
| |
| 10 | dedekindicc.loc |
. . . . 5
| |
| 11 | dedekindicc.ab |
. . . . 5
| |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | dedekindicclemicc 15219 |
. . . 4
|
| 13 | df-reu 2493 |
. . . 4
| |
| 14 | 12, 13 | sylib 122 |
. . 3
|
| 15 | breq1 4062 |
. . . . . . . . . 10
| |
| 16 | 15 | cbvralv 2742 |
. . . . . . . . 9
|
| 17 | breq2 4063 |
. . . . . . . . . 10
| |
| 18 | 17 | cbvralv 2742 |
. . . . . . . . 9
|
| 19 | 16, 18 | anbi12i 460 |
. . . . . . . 8
|
| 20 | 19 | anbi2i 457 |
. . . . . . 7
|
| 21 | iccssre 10112 |
. . . . . . . . . . 11
| |
| 22 | 1, 2, 21 | syl2anc 411 |
. . . . . . . . . 10
|
| 23 | 22 | sselda 3201 |
. . . . . . . . 9
|
| 24 | 23 | adantrr 479 |
. . . . . . . 8
|
| 25 | 5 | adantr 276 |
. . . . . . . . 9
|
| 26 | 1 | ad2antrr 488 |
. . . . . . . . . 10
|
| 27 | simpll 527 |
. . . . . . . . . . 11
| |
| 28 | simprl 529 |
. . . . . . . . . . 11
| |
| 29 | 22 | sseld 3200 |
. . . . . . . . . . 11
|
| 30 | 27, 28, 29 | sylc 62 |
. . . . . . . . . 10
|
| 31 | 24 | adantr 276 |
. . . . . . . . . 10
|
| 32 | 1 | rexrd 8157 |
. . . . . . . . . . . 12
|
| 33 | 32 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 34 | 2 | rexrd 8157 |
. . . . . . . . . . . 12
|
| 35 | 34 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 36 | iccgelb 10089 |
. . . . . . . . . . 11
| |
| 37 | 33, 35, 28, 36 | syl3anc 1250 |
. . . . . . . . . 10
|
| 38 | breq1 4062 |
. . . . . . . . . . 11
| |
| 39 | simprrl 539 |
. . . . . . . . . . . 12
| |
| 40 | 39 | adantr 276 |
. . . . . . . . . . 11
|
| 41 | simprr 531 |
. . . . . . . . . . 11
| |
| 42 | 38, 40, 41 | rspcdva 2889 |
. . . . . . . . . 10
|
| 43 | 26, 30, 31, 37, 42 | lelttrd 8232 |
. . . . . . . . 9
|
| 44 | 25, 43 | rexlimddv 2630 |
. . . . . . . 8
|
| 45 | 6 | adantr 276 |
. . . . . . . . 9
|
| 46 | 24 | adantr 276 |
. . . . . . . . . 10
|
| 47 | simpll 527 |
. . . . . . . . . . 11
| |
| 48 | simprl 529 |
. . . . . . . . . . 11
| |
| 49 | 22 | sseld 3200 |
. . . . . . . . . . 11
|
| 50 | 47, 48, 49 | sylc 62 |
. . . . . . . . . 10
|
| 51 | 2 | ad2antrr 488 |
. . . . . . . . . 10
|
| 52 | breq2 4063 |
. . . . . . . . . . 11
| |
| 53 | simprrr 540 |
. . . . . . . . . . . 12
| |
| 54 | 53 | adantr 276 |
. . . . . . . . . . 11
|
| 55 | simprr 531 |
. . . . . . . . . . 11
| |
| 56 | 52, 54, 55 | rspcdva 2889 |
. . . . . . . . . 10
|
| 57 | 32 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 58 | 34 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 59 | iccleub 10088 |
. . . . . . . . . . 11
| |
| 60 | 57, 58, 48, 59 | syl3anc 1250 |
. . . . . . . . . 10
|
| 61 | 46, 50, 51, 56, 60 | ltletrd 8531 |
. . . . . . . . 9
|
| 62 | 45, 61 | rexlimddv 2630 |
. . . . . . . 8
|
| 63 | 32 | adantr 276 |
. . . . . . . . 9
|
| 64 | 34 | adantr 276 |
. . . . . . . . 9
|
| 65 | elioo2 10078 |
. . . . . . . . 9
| |
| 66 | 63, 64, 65 | syl2anc 411 |
. . . . . . . 8
|
| 67 | 24, 44, 62, 66 | mpbir3and 1183 |
. . . . . . 7
|
| 68 | 20, 67 | sylan2b 287 |
. . . . . 6
|
| 69 | simprr 531 |
. . . . . 6
| |
| 70 | 68, 69 | jca 306 |
. . . . 5
|
| 71 | ioossicc 10116 |
. . . . . . . 8
| |
| 72 | 71 | sseli 3197 |
. . . . . . 7
|
| 73 | 72 | ad2antrl 490 |
. . . . . 6
|
| 74 | simprr 531 |
. . . . . 6
| |
| 75 | 73, 74 | jca 306 |
. . . . 5
|
| 76 | 70, 75 | impbida 596 |
. . . 4
|
| 77 | 76 | eubidv 2063 |
. . 3
|
| 78 | 14, 77 | mpbid 147 |
. 2
|
| 79 | df-reu 2493 |
. 2
| |
| 80 | 78, 79 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 ax-pre-suploc 8081 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-rp 9811 df-ioo 10049 df-icc 10052 df-seqfrec 10630 df-exp 10721 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 |
| This theorem is referenced by: ivthinclemex 15229 |
| Copyright terms: Public domain | W3C validator |