ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindicc Unicode version

Theorem dedekindicc 12769
Description: A Dedekind cut identifies a unique real number. Similar to df-inp 7267 except that the Dedekind cut is formed by sets of reals (rather than positive rationals). But in both cases the defining property of a Dedekind cut is that it is inhabited (bounded), rounded, disjoint, and located. (Contributed by Jim Kingdon, 19-Feb-2024.)
Hypotheses
Ref Expression
dedekindicc.a  |-  ( ph  ->  A  e.  RR )
dedekindicc.b  |-  ( ph  ->  B  e.  RR )
dedekindicc.lss  |-  ( ph  ->  L  C_  ( A [,] B ) )
dedekindicc.uss  |-  ( ph  ->  U  C_  ( A [,] B ) )
dedekindicc.lm  |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )
dedekindicc.um  |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )
dedekindicc.lr  |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
dedekindicc.ur  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
dedekindicc.disj  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
dedekindicc.loc  |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) ) )
dedekindicc.ab  |-  ( ph  ->  A  <  B )
Assertion
Ref Expression
dedekindicc  |-  ( ph  ->  E! x  e.  ( A (,) B ) ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )
Distinct variable groups:    A, q, r, x    B, q, r, x    L, q, r, x    U, q, r, x    ph, q,
r, x

Proof of Theorem dedekindicc
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dedekindicc.a . . . . 5  |-  ( ph  ->  A  e.  RR )
2 dedekindicc.b . . . . 5  |-  ( ph  ->  B  e.  RR )
3 dedekindicc.lss . . . . 5  |-  ( ph  ->  L  C_  ( A [,] B ) )
4 dedekindicc.uss . . . . 5  |-  ( ph  ->  U  C_  ( A [,] B ) )
5 dedekindicc.lm . . . . 5  |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )
6 dedekindicc.um . . . . 5  |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )
7 dedekindicc.lr . . . . 5  |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
8 dedekindicc.ur . . . . 5  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
9 dedekindicc.disj . . . . 5  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
10 dedekindicc.loc . . . . 5  |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) ) )
11 dedekindicc.ab . . . . 5  |-  ( ph  ->  A  <  B )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11dedekindicclemicc 12768 . . . 4  |-  ( ph  ->  E! x  e.  ( A [,] B ) ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )
13 df-reu 2421 . . . 4  |-  ( E! x  e.  ( A [,] B ) ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r )  <->  E! x
( x  e.  ( A [,] B )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r
) ) )
1412, 13sylib 121 . . 3  |-  ( ph  ->  E! x ( x  e.  ( A [,] B )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )
15 breq1 3927 . . . . . . . . . 10  |-  ( q  =  a  ->  (
q  <  x  <->  a  <  x ) )
1615cbvralv 2652 . . . . . . . . 9  |-  ( A. q  e.  L  q  <  x  <->  A. a  e.  L  a  <  x )
17 breq2 3928 . . . . . . . . . 10  |-  ( r  =  b  ->  (
x  <  r  <->  x  <  b ) )
1817cbvralv 2652 . . . . . . . . 9  |-  ( A. r  e.  U  x  <  r  <->  A. b  e.  U  x  <  b )
1916, 18anbi12i 455 . . . . . . . 8  |-  ( ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r )  <->  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) )
2019anbi2i 452 . . . . . . 7  |-  ( ( x  e.  ( A [,] B )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )  <->  ( x  e.  ( A [,] B
)  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )
21 iccssre 9731 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
221, 2, 21syl2anc 408 . . . . . . . . . 10  |-  ( ph  ->  ( A [,] B
)  C_  RR )
2322sselda 3092 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  e.  RR )
2423adantrr 470 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( A [,] B
)  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  ->  x  e.  RR )
255adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( A [,] B
)  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  ->  E. q  e.  ( A [,] B ) q  e.  L )
261ad2antrr 479 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  /\  ( q  e.  ( A [,] B
)  /\  q  e.  L ) )  ->  A  e.  RR )
27 simpll 518 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  /\  ( q  e.  ( A [,] B
)  /\  q  e.  L ) )  ->  ph )
28 simprl 520 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  /\  ( q  e.  ( A [,] B
)  /\  q  e.  L ) )  -> 
q  e.  ( A [,] B ) )
2922sseld 3091 . . . . . . . . . . 11  |-  ( ph  ->  ( q  e.  ( A [,] B )  ->  q  e.  RR ) )
3027, 28, 29sylc 62 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  /\  ( q  e.  ( A [,] B
)  /\  q  e.  L ) )  -> 
q  e.  RR )
3124adantr 274 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  /\  ( q  e.  ( A [,] B
)  /\  q  e.  L ) )  ->  x  e.  RR )
321rexrd 7808 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR* )
3332ad2antrr 479 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  /\  ( q  e.  ( A [,] B
)  /\  q  e.  L ) )  ->  A  e.  RR* )
342rexrd 7808 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  RR* )
3534ad2antrr 479 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  /\  ( q  e.  ( A [,] B
)  /\  q  e.  L ) )  ->  B  e.  RR* )
36 iccgelb 9708 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  q  e.  ( A [,] B
) )  ->  A  <_  q )
3733, 35, 28, 36syl3anc 1216 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  /\  ( q  e.  ( A [,] B
)  /\  q  e.  L ) )  ->  A  <_  q )
38 breq1 3927 . . . . . . . . . . 11  |-  ( a  =  q  ->  (
a  <  x  <->  q  <  x ) )
39 simprrl 528 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( A [,] B
)  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  ->  A. a  e.  L  a  <  x )
4039adantr 274 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  /\  ( q  e.  ( A [,] B
)  /\  q  e.  L ) )  ->  A. a  e.  L  a  <  x )
41 simprr 521 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  /\  ( q  e.  ( A [,] B
)  /\  q  e.  L ) )  -> 
q  e.  L )
4238, 40, 41rspcdva 2789 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  /\  ( q  e.  ( A [,] B
)  /\  q  e.  L ) )  -> 
q  <  x )
4326, 30, 31, 37, 42lelttrd 7880 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  /\  ( q  e.  ( A [,] B
)  /\  q  e.  L ) )  ->  A  <  x )
4425, 43rexlimddv 2552 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( A [,] B
)  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  ->  A  <  x )
456adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( A [,] B
)  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  ->  E. r  e.  ( A [,] B ) r  e.  U )
4624adantr 274 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  /\  ( r  e.  ( A [,] B
)  /\  r  e.  U ) )  ->  x  e.  RR )
47 simpll 518 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  /\  ( r  e.  ( A [,] B
)  /\  r  e.  U ) )  ->  ph )
48 simprl 520 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  /\  ( r  e.  ( A [,] B
)  /\  r  e.  U ) )  -> 
r  e.  ( A [,] B ) )
4922sseld 3091 . . . . . . . . . . 11  |-  ( ph  ->  ( r  e.  ( A [,] B )  ->  r  e.  RR ) )
5047, 48, 49sylc 62 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  /\  ( r  e.  ( A [,] B
)  /\  r  e.  U ) )  -> 
r  e.  RR )
512ad2antrr 479 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  /\  ( r  e.  ( A [,] B
)  /\  r  e.  U ) )  ->  B  e.  RR )
52 breq2 3928 . . . . . . . . . . 11  |-  ( b  =  r  ->  (
x  <  b  <->  x  <  r ) )
53 simprrr 529 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( A [,] B
)  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  ->  A. b  e.  U  x  <  b )
5453adantr 274 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  /\  ( r  e.  ( A [,] B
)  /\  r  e.  U ) )  ->  A. b  e.  U  x  <  b )
55 simprr 521 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  /\  ( r  e.  ( A [,] B
)  /\  r  e.  U ) )  -> 
r  e.  U )
5652, 54, 55rspcdva 2789 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  /\  ( r  e.  ( A [,] B
)  /\  r  e.  U ) )  ->  x  <  r )
5732ad2antrr 479 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  /\  ( r  e.  ( A [,] B
)  /\  r  e.  U ) )  ->  A  e.  RR* )
5834ad2antrr 479 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  /\  ( r  e.  ( A [,] B
)  /\  r  e.  U ) )  ->  B  e.  RR* )
59 iccleub 9707 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  r  e.  ( A [,] B
) )  ->  r  <_  B )
6057, 58, 48, 59syl3anc 1216 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  /\  ( r  e.  ( A [,] B
)  /\  r  e.  U ) )  -> 
r  <_  B )
6146, 50, 51, 56, 60ltletrd 8178 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  /\  ( r  e.  ( A [,] B
)  /\  r  e.  U ) )  ->  x  <  B )
6245, 61rexlimddv 2552 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( A [,] B
)  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  ->  x  <  B )
6332adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( A [,] B
)  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  ->  A  e.  RR* )
6434adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( A [,] B
)  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  ->  B  e.  RR* )
65 elioo2 9697 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  e.  ( A (,) B )  <->  ( x  e.  RR  /\  A  < 
x  /\  x  <  B ) ) )
6663, 64, 65syl2anc 408 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( A [,] B
)  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  -> 
( x  e.  ( A (,) B )  <-> 
( x  e.  RR  /\  A  <  x  /\  x  <  B ) ) )
6724, 44, 62, 66mpbir3and 1164 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( A [,] B
)  /\  ( A. a  e.  L  a  <  x  /\  A. b  e.  U  x  <  b ) ) )  ->  x  e.  ( A (,) B ) )
6820, 67sylan2b 285 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( A [,] B
)  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  ->  x  e.  ( A (,) B ) )
69 simprr 521 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( A [,] B
)  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  -> 
( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )
7068, 69jca 304 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( A [,] B
)  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  -> 
( x  e.  ( A (,) B )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r
) ) )
71 ioossicc 9735 . . . . . . . 8  |-  ( A (,) B )  C_  ( A [,] B )
7271sseli 3088 . . . . . . 7  |-  ( x  e.  ( A (,) B )  ->  x  e.  ( A [,] B
) )
7372ad2antrl 481 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( A (,) B
)  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  ->  x  e.  ( A [,] B ) )
74 simprr 521 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( A (,) B
)  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  -> 
( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )
7573, 74jca 304 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( A (,) B
)  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  -> 
( x  e.  ( A [,] B )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r
) ) )
7670, 75impbida 585 . . . 4  |-  ( ph  ->  ( ( x  e.  ( A [,] B
)  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )  <->  ( x  e.  ( A (,) B
)  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) ) )
7776eubidv 2005 . . 3  |-  ( ph  ->  ( E! x ( x  e.  ( A [,] B )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )  <->  E! x
( x  e.  ( A (,) B )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r
) ) ) )
7814, 77mpbid 146 . 2  |-  ( ph  ->  E! x ( x  e.  ( A (,) B )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )
79 df-reu 2421 . 2  |-  ( E! x  e.  ( A (,) B ) ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r )  <->  E! x
( x  e.  ( A (,) B )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r
) ) )
8078, 79sylibr 133 1  |-  ( ph  ->  E! x  e.  ( A (,) B ) ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    /\ w3a 962    = wceq 1331    e. wcel 1480   E!weu 1997   A.wral 2414   E.wrex 2415   E!wreu 2416    i^i cin 3065    C_ wss 3066   (/)c0 3358   class class class wbr 3924  (class class class)co 5767   RRcr 7612   RR*cxr 7792    < clt 7793    <_ cle 7794   (,)cioo 9664   [,]cicc 9667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733  ax-pre-suploc 7734
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-isom 5127  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-sup 6864  df-inf 6865  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-rp 9435  df-ioo 9668  df-icc 9671  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764
This theorem is referenced by:  ivthinclemex  12778
  Copyright terms: Public domain W3C validator