| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dedekindicc | Unicode version | ||
| Description: A Dedekind cut identifies a unique real number. Similar to df-inp 7579 except that the Dedekind cut is formed by sets of reals (rather than positive rationals). But in both cases the defining property of a Dedekind cut is that it is inhabited (bounded), rounded, disjoint, and located. (Contributed by Jim Kingdon, 19-Feb-2024.) |
| Ref | Expression |
|---|---|
| dedekindicc.a |
|
| dedekindicc.b |
|
| dedekindicc.lss |
|
| dedekindicc.uss |
|
| dedekindicc.lm |
|
| dedekindicc.um |
|
| dedekindicc.lr |
|
| dedekindicc.ur |
|
| dedekindicc.disj |
|
| dedekindicc.loc |
|
| dedekindicc.ab |
|
| Ref | Expression |
|---|---|
| dedekindicc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedekindicc.a |
. . . . 5
| |
| 2 | dedekindicc.b |
. . . . 5
| |
| 3 | dedekindicc.lss |
. . . . 5
| |
| 4 | dedekindicc.uss |
. . . . 5
| |
| 5 | dedekindicc.lm |
. . . . 5
| |
| 6 | dedekindicc.um |
. . . . 5
| |
| 7 | dedekindicc.lr |
. . . . 5
| |
| 8 | dedekindicc.ur |
. . . . 5
| |
| 9 | dedekindicc.disj |
. . . . 5
| |
| 10 | dedekindicc.loc |
. . . . 5
| |
| 11 | dedekindicc.ab |
. . . . 5
| |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | dedekindicclemicc 15104 |
. . . 4
|
| 13 | df-reu 2491 |
. . . 4
| |
| 14 | 12, 13 | sylib 122 |
. . 3
|
| 15 | breq1 4047 |
. . . . . . . . . 10
| |
| 16 | 15 | cbvralv 2738 |
. . . . . . . . 9
|
| 17 | breq2 4048 |
. . . . . . . . . 10
| |
| 18 | 17 | cbvralv 2738 |
. . . . . . . . 9
|
| 19 | 16, 18 | anbi12i 460 |
. . . . . . . 8
|
| 20 | 19 | anbi2i 457 |
. . . . . . 7
|
| 21 | iccssre 10077 |
. . . . . . . . . . 11
| |
| 22 | 1, 2, 21 | syl2anc 411 |
. . . . . . . . . 10
|
| 23 | 22 | sselda 3193 |
. . . . . . . . 9
|
| 24 | 23 | adantrr 479 |
. . . . . . . 8
|
| 25 | 5 | adantr 276 |
. . . . . . . . 9
|
| 26 | 1 | ad2antrr 488 |
. . . . . . . . . 10
|
| 27 | simpll 527 |
. . . . . . . . . . 11
| |
| 28 | simprl 529 |
. . . . . . . . . . 11
| |
| 29 | 22 | sseld 3192 |
. . . . . . . . . . 11
|
| 30 | 27, 28, 29 | sylc 62 |
. . . . . . . . . 10
|
| 31 | 24 | adantr 276 |
. . . . . . . . . 10
|
| 32 | 1 | rexrd 8122 |
. . . . . . . . . . . 12
|
| 33 | 32 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 34 | 2 | rexrd 8122 |
. . . . . . . . . . . 12
|
| 35 | 34 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 36 | iccgelb 10054 |
. . . . . . . . . . 11
| |
| 37 | 33, 35, 28, 36 | syl3anc 1250 |
. . . . . . . . . 10
|
| 38 | breq1 4047 |
. . . . . . . . . . 11
| |
| 39 | simprrl 539 |
. . . . . . . . . . . 12
| |
| 40 | 39 | adantr 276 |
. . . . . . . . . . 11
|
| 41 | simprr 531 |
. . . . . . . . . . 11
| |
| 42 | 38, 40, 41 | rspcdva 2882 |
. . . . . . . . . 10
|
| 43 | 26, 30, 31, 37, 42 | lelttrd 8197 |
. . . . . . . . 9
|
| 44 | 25, 43 | rexlimddv 2628 |
. . . . . . . 8
|
| 45 | 6 | adantr 276 |
. . . . . . . . 9
|
| 46 | 24 | adantr 276 |
. . . . . . . . . 10
|
| 47 | simpll 527 |
. . . . . . . . . . 11
| |
| 48 | simprl 529 |
. . . . . . . . . . 11
| |
| 49 | 22 | sseld 3192 |
. . . . . . . . . . 11
|
| 50 | 47, 48, 49 | sylc 62 |
. . . . . . . . . 10
|
| 51 | 2 | ad2antrr 488 |
. . . . . . . . . 10
|
| 52 | breq2 4048 |
. . . . . . . . . . 11
| |
| 53 | simprrr 540 |
. . . . . . . . . . . 12
| |
| 54 | 53 | adantr 276 |
. . . . . . . . . . 11
|
| 55 | simprr 531 |
. . . . . . . . . . 11
| |
| 56 | 52, 54, 55 | rspcdva 2882 |
. . . . . . . . . 10
|
| 57 | 32 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 58 | 34 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 59 | iccleub 10053 |
. . . . . . . . . . 11
| |
| 60 | 57, 58, 48, 59 | syl3anc 1250 |
. . . . . . . . . 10
|
| 61 | 46, 50, 51, 56, 60 | ltletrd 8496 |
. . . . . . . . 9
|
| 62 | 45, 61 | rexlimddv 2628 |
. . . . . . . 8
|
| 63 | 32 | adantr 276 |
. . . . . . . . 9
|
| 64 | 34 | adantr 276 |
. . . . . . . . 9
|
| 65 | elioo2 10043 |
. . . . . . . . 9
| |
| 66 | 63, 64, 65 | syl2anc 411 |
. . . . . . . 8
|
| 67 | 24, 44, 62, 66 | mpbir3and 1183 |
. . . . . . 7
|
| 68 | 20, 67 | sylan2b 287 |
. . . . . 6
|
| 69 | simprr 531 |
. . . . . 6
| |
| 70 | 68, 69 | jca 306 |
. . . . 5
|
| 71 | ioossicc 10081 |
. . . . . . . 8
| |
| 72 | 71 | sseli 3189 |
. . . . . . 7
|
| 73 | 72 | ad2antrl 490 |
. . . . . 6
|
| 74 | simprr 531 |
. . . . . 6
| |
| 75 | 73, 74 | jca 306 |
. . . . 5
|
| 76 | 70, 75 | impbida 596 |
. . . 4
|
| 77 | 76 | eubidv 2062 |
. . 3
|
| 78 | 14, 77 | mpbid 147 |
. 2
|
| 79 | df-reu 2491 |
. 2
| |
| 80 | 78, 79 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 ax-caucvg 8045 ax-pre-suploc 8046 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-isom 5280 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-sup 7086 df-inf 7087 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-n0 9296 df-z 9373 df-uz 9649 df-rp 9776 df-ioo 10014 df-icc 10017 df-seqfrec 10593 df-exp 10684 df-cj 11153 df-re 11154 df-im 11155 df-rsqrt 11309 df-abs 11310 |
| This theorem is referenced by: ivthinclemex 15114 |
| Copyright terms: Public domain | W3C validator |