| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dedekindicc | Unicode version | ||
| Description: A Dedekind cut identifies a unique real number. Similar to df-inp 7653 except that the Dedekind cut is formed by sets of reals (rather than positive rationals). But in both cases the defining property of a Dedekind cut is that it is inhabited (bounded), rounded, disjoint, and located. (Contributed by Jim Kingdon, 19-Feb-2024.) |
| Ref | Expression |
|---|---|
| dedekindicc.a |
|
| dedekindicc.b |
|
| dedekindicc.lss |
|
| dedekindicc.uss |
|
| dedekindicc.lm |
|
| dedekindicc.um |
|
| dedekindicc.lr |
|
| dedekindicc.ur |
|
| dedekindicc.disj |
|
| dedekindicc.loc |
|
| dedekindicc.ab |
|
| Ref | Expression |
|---|---|
| dedekindicc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedekindicc.a |
. . . . 5
| |
| 2 | dedekindicc.b |
. . . . 5
| |
| 3 | dedekindicc.lss |
. . . . 5
| |
| 4 | dedekindicc.uss |
. . . . 5
| |
| 5 | dedekindicc.lm |
. . . . 5
| |
| 6 | dedekindicc.um |
. . . . 5
| |
| 7 | dedekindicc.lr |
. . . . 5
| |
| 8 | dedekindicc.ur |
. . . . 5
| |
| 9 | dedekindicc.disj |
. . . . 5
| |
| 10 | dedekindicc.loc |
. . . . 5
| |
| 11 | dedekindicc.ab |
. . . . 5
| |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | dedekindicclemicc 15306 |
. . . 4
|
| 13 | df-reu 2515 |
. . . 4
| |
| 14 | 12, 13 | sylib 122 |
. . 3
|
| 15 | breq1 4086 |
. . . . . . . . . 10
| |
| 16 | 15 | cbvralv 2765 |
. . . . . . . . 9
|
| 17 | breq2 4087 |
. . . . . . . . . 10
| |
| 18 | 17 | cbvralv 2765 |
. . . . . . . . 9
|
| 19 | 16, 18 | anbi12i 460 |
. . . . . . . 8
|
| 20 | 19 | anbi2i 457 |
. . . . . . 7
|
| 21 | iccssre 10151 |
. . . . . . . . . . 11
| |
| 22 | 1, 2, 21 | syl2anc 411 |
. . . . . . . . . 10
|
| 23 | 22 | sselda 3224 |
. . . . . . . . 9
|
| 24 | 23 | adantrr 479 |
. . . . . . . 8
|
| 25 | 5 | adantr 276 |
. . . . . . . . 9
|
| 26 | 1 | ad2antrr 488 |
. . . . . . . . . 10
|
| 27 | simpll 527 |
. . . . . . . . . . 11
| |
| 28 | simprl 529 |
. . . . . . . . . . 11
| |
| 29 | 22 | sseld 3223 |
. . . . . . . . . . 11
|
| 30 | 27, 28, 29 | sylc 62 |
. . . . . . . . . 10
|
| 31 | 24 | adantr 276 |
. . . . . . . . . 10
|
| 32 | 1 | rexrd 8196 |
. . . . . . . . . . . 12
|
| 33 | 32 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 34 | 2 | rexrd 8196 |
. . . . . . . . . . . 12
|
| 35 | 34 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 36 | iccgelb 10128 |
. . . . . . . . . . 11
| |
| 37 | 33, 35, 28, 36 | syl3anc 1271 |
. . . . . . . . . 10
|
| 38 | breq1 4086 |
. . . . . . . . . . 11
| |
| 39 | simprrl 539 |
. . . . . . . . . . . 12
| |
| 40 | 39 | adantr 276 |
. . . . . . . . . . 11
|
| 41 | simprr 531 |
. . . . . . . . . . 11
| |
| 42 | 38, 40, 41 | rspcdva 2912 |
. . . . . . . . . 10
|
| 43 | 26, 30, 31, 37, 42 | lelttrd 8271 |
. . . . . . . . 9
|
| 44 | 25, 43 | rexlimddv 2653 |
. . . . . . . 8
|
| 45 | 6 | adantr 276 |
. . . . . . . . 9
|
| 46 | 24 | adantr 276 |
. . . . . . . . . 10
|
| 47 | simpll 527 |
. . . . . . . . . . 11
| |
| 48 | simprl 529 |
. . . . . . . . . . 11
| |
| 49 | 22 | sseld 3223 |
. . . . . . . . . . 11
|
| 50 | 47, 48, 49 | sylc 62 |
. . . . . . . . . 10
|
| 51 | 2 | ad2antrr 488 |
. . . . . . . . . 10
|
| 52 | breq2 4087 |
. . . . . . . . . . 11
| |
| 53 | simprrr 540 |
. . . . . . . . . . . 12
| |
| 54 | 53 | adantr 276 |
. . . . . . . . . . 11
|
| 55 | simprr 531 |
. . . . . . . . . . 11
| |
| 56 | 52, 54, 55 | rspcdva 2912 |
. . . . . . . . . 10
|
| 57 | 32 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 58 | 34 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 59 | iccleub 10127 |
. . . . . . . . . . 11
| |
| 60 | 57, 58, 48, 59 | syl3anc 1271 |
. . . . . . . . . 10
|
| 61 | 46, 50, 51, 56, 60 | ltletrd 8570 |
. . . . . . . . 9
|
| 62 | 45, 61 | rexlimddv 2653 |
. . . . . . . 8
|
| 63 | 32 | adantr 276 |
. . . . . . . . 9
|
| 64 | 34 | adantr 276 |
. . . . . . . . 9
|
| 65 | elioo2 10117 |
. . . . . . . . 9
| |
| 66 | 63, 64, 65 | syl2anc 411 |
. . . . . . . 8
|
| 67 | 24, 44, 62, 66 | mpbir3and 1204 |
. . . . . . 7
|
| 68 | 20, 67 | sylan2b 287 |
. . . . . 6
|
| 69 | simprr 531 |
. . . . . 6
| |
| 70 | 68, 69 | jca 306 |
. . . . 5
|
| 71 | ioossicc 10155 |
. . . . . . . 8
| |
| 72 | 71 | sseli 3220 |
. . . . . . 7
|
| 73 | 72 | ad2antrl 490 |
. . . . . 6
|
| 74 | simprr 531 |
. . . . . 6
| |
| 75 | 73, 74 | jca 306 |
. . . . 5
|
| 76 | 70, 75 | impbida 598 |
. . . 4
|
| 77 | 76 | eubidv 2085 |
. . 3
|
| 78 | 14, 77 | mpbid 147 |
. 2
|
| 79 | df-reu 2515 |
. 2
| |
| 80 | 78, 79 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 ax-arch 8118 ax-caucvg 8119 ax-pre-suploc 8120 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-sup 7151 df-inf 7152 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-n0 9370 df-z 9447 df-uz 9723 df-rp 9850 df-ioo 10088 df-icc 10091 df-seqfrec 10670 df-exp 10761 df-cj 11353 df-re 11354 df-im 11355 df-rsqrt 11509 df-abs 11510 |
| This theorem is referenced by: ivthinclemex 15316 |
| Copyright terms: Public domain | W3C validator |