ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feu Unicode version

Theorem feu 5436
Description: There is exactly one value of a function in its codomain. (Contributed by NM, 10-Dec-2003.)
Assertion
Ref Expression
feu  |-  ( ( F : A --> B  /\  C  e.  A )  ->  E! y  e.  B  <. C ,  y >.  e.  F )
Distinct variable groups:    y, F    y, A    y, B    y, C

Proof of Theorem feu
StepHypRef Expression
1 ffn 5403 . . . 4  |-  ( F : A --> B  ->  F  Fn  A )
2 fneu2 5359 . . . 4  |-  ( ( F  Fn  A  /\  C  e.  A )  ->  E! y <. C , 
y >.  e.  F )
31, 2sylan 283 . . 3  |-  ( ( F : A --> B  /\  C  e.  A )  ->  E! y <. C , 
y >.  e.  F )
4 opelf 5425 . . . . . . . 8  |-  ( ( F : A --> B  /\  <. C ,  y >.  e.  F )  ->  ( C  e.  A  /\  y  e.  B )
)
54simprd 114 . . . . . . 7  |-  ( ( F : A --> B  /\  <. C ,  y >.  e.  F )  ->  y  e.  B )
65ex 115 . . . . . 6  |-  ( F : A --> B  -> 
( <. C ,  y
>.  e.  F  ->  y  e.  B ) )
76pm4.71rd 394 . . . . 5  |-  ( F : A --> B  -> 
( <. C ,  y
>.  e.  F  <->  ( y  e.  B  /\  <. C , 
y >.  e.  F ) ) )
87eubidv 2050 . . . 4  |-  ( F : A --> B  -> 
( E! y <. C ,  y >.  e.  F  <->  E! y ( y  e.  B  /\  <. C ,  y >.  e.  F
) ) )
98adantr 276 . . 3  |-  ( ( F : A --> B  /\  C  e.  A )  ->  ( E! y <. C ,  y >.  e.  F  <->  E! y ( y  e.  B  /\  <. C ,  y >.  e.  F
) ) )
103, 9mpbid 147 . 2  |-  ( ( F : A --> B  /\  C  e.  A )  ->  E! y ( y  e.  B  /\  <. C ,  y >.  e.  F
) )
11 df-reu 2479 . 2  |-  ( E! y  e.  B  <. C ,  y >.  e.  F  <->  E! y ( y  e.  B  /\  <. C , 
y >.  e.  F ) )
1210, 11sylibr 134 1  |-  ( ( F : A --> B  /\  C  e.  A )  ->  E! y  e.  B  <. C ,  y >.  e.  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E!weu 2042    e. wcel 2164   E!wreu 2474   <.cop 3621    Fn wfn 5249   -->wf 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-fun 5256  df-fn 5257  df-f 5258
This theorem is referenced by:  fsn  5730  f1ofveu  5906
  Copyright terms: Public domain W3C validator