ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feu Unicode version

Theorem feu 5193
Description: There is exactly one value of a function in its codomain. (Contributed by NM, 10-Dec-2003.)
Assertion
Ref Expression
feu  |-  ( ( F : A --> B  /\  C  e.  A )  ->  E! y  e.  B  <. C ,  y >.  e.  F )
Distinct variable groups:    y, F    y, A    y, B    y, C

Proof of Theorem feu
StepHypRef Expression
1 ffn 5161 . . . 4  |-  ( F : A --> B  ->  F  Fn  A )
2 fneu2 5119 . . . 4  |-  ( ( F  Fn  A  /\  C  e.  A )  ->  E! y <. C , 
y >.  e.  F )
31, 2sylan 277 . . 3  |-  ( ( F : A --> B  /\  C  e.  A )  ->  E! y <. C , 
y >.  e.  F )
4 opelf 5182 . . . . . . . 8  |-  ( ( F : A --> B  /\  <. C ,  y >.  e.  F )  ->  ( C  e.  A  /\  y  e.  B )
)
54simprd 112 . . . . . . 7  |-  ( ( F : A --> B  /\  <. C ,  y >.  e.  F )  ->  y  e.  B )
65ex 113 . . . . . 6  |-  ( F : A --> B  -> 
( <. C ,  y
>.  e.  F  ->  y  e.  B ) )
76pm4.71rd 386 . . . . 5  |-  ( F : A --> B  -> 
( <. C ,  y
>.  e.  F  <->  ( y  e.  B  /\  <. C , 
y >.  e.  F ) ) )
87eubidv 1956 . . . 4  |-  ( F : A --> B  -> 
( E! y <. C ,  y >.  e.  F  <->  E! y ( y  e.  B  /\  <. C ,  y >.  e.  F
) ) )
98adantr 270 . . 3  |-  ( ( F : A --> B  /\  C  e.  A )  ->  ( E! y <. C ,  y >.  e.  F  <->  E! y ( y  e.  B  /\  <. C ,  y >.  e.  F
) ) )
103, 9mpbid 145 . 2  |-  ( ( F : A --> B  /\  C  e.  A )  ->  E! y ( y  e.  B  /\  <. C ,  y >.  e.  F
) )
11 df-reu 2366 . 2  |-  ( E! y  e.  B  <. C ,  y >.  e.  F  <->  E! y ( y  e.  B  /\  <. C , 
y >.  e.  F ) )
1210, 11sylibr 132 1  |-  ( ( F : A --> B  /\  C  e.  A )  ->  E! y  e.  B  <. C ,  y >.  e.  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1438   E!weu 1948   E!wreu 2361   <.cop 3449    Fn wfn 5010   -->wf 5011
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-reu 2366  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-fun 5017  df-fn 5018  df-f 5019
This theorem is referenced by:  fsn  5469  f1ofveu  5640
  Copyright terms: Public domain W3C validator