ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feu Unicode version

Theorem feu 5480
Description: There is exactly one value of a function in its codomain. (Contributed by NM, 10-Dec-2003.)
Assertion
Ref Expression
feu  |-  ( ( F : A --> B  /\  C  e.  A )  ->  E! y  e.  B  <. C ,  y >.  e.  F )
Distinct variable groups:    y, F    y, A    y, B    y, C

Proof of Theorem feu
StepHypRef Expression
1 ffn 5445 . . . 4  |-  ( F : A --> B  ->  F  Fn  A )
2 fneu2 5400 . . . 4  |-  ( ( F  Fn  A  /\  C  e.  A )  ->  E! y <. C , 
y >.  e.  F )
31, 2sylan 283 . . 3  |-  ( ( F : A --> B  /\  C  e.  A )  ->  E! y <. C , 
y >.  e.  F )
4 opelf 5468 . . . . . . . 8  |-  ( ( F : A --> B  /\  <. C ,  y >.  e.  F )  ->  ( C  e.  A  /\  y  e.  B )
)
54simprd 114 . . . . . . 7  |-  ( ( F : A --> B  /\  <. C ,  y >.  e.  F )  ->  y  e.  B )
65ex 115 . . . . . 6  |-  ( F : A --> B  -> 
( <. C ,  y
>.  e.  F  ->  y  e.  B ) )
76pm4.71rd 394 . . . . 5  |-  ( F : A --> B  -> 
( <. C ,  y
>.  e.  F  <->  ( y  e.  B  /\  <. C , 
y >.  e.  F ) ) )
87eubidv 2063 . . . 4  |-  ( F : A --> B  -> 
( E! y <. C ,  y >.  e.  F  <->  E! y ( y  e.  B  /\  <. C ,  y >.  e.  F
) ) )
98adantr 276 . . 3  |-  ( ( F : A --> B  /\  C  e.  A )  ->  ( E! y <. C ,  y >.  e.  F  <->  E! y ( y  e.  B  /\  <. C ,  y >.  e.  F
) ) )
103, 9mpbid 147 . 2  |-  ( ( F : A --> B  /\  C  e.  A )  ->  E! y ( y  e.  B  /\  <. C ,  y >.  e.  F
) )
11 df-reu 2493 . 2  |-  ( E! y  e.  B  <. C ,  y >.  e.  F  <->  E! y ( y  e.  B  /\  <. C , 
y >.  e.  F ) )
1210, 11sylibr 134 1  |-  ( ( F : A --> B  /\  C  e.  A )  ->  E! y  e.  B  <. C ,  y >.  e.  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E!weu 2055    e. wcel 2178   E!wreu 2488   <.cop 3646    Fn wfn 5285   -->wf 5286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-fun 5292  df-fn 5293  df-f 5294
This theorem is referenced by:  fsn  5775  f1ofveu  5955
  Copyright terms: Public domain W3C validator