Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eubidv | GIF version |
Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) |
Ref | Expression |
---|---|
eubidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
eubidv | ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1526 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | eubidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | eubid 2031 | 1 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∃!weu 2024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-17 1524 ax-ial 1532 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-eu 2027 |
This theorem is referenced by: eubii 2033 eueq2dc 2908 eueq3dc 2909 reuhypd 4465 feu 5390 funfveu 5520 dff4im 5654 acexmid 5864 upxp 13343 dedekindicc 13682 |
Copyright terms: Public domain | W3C validator |