| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eubidv | GIF version | ||
| Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) |
| Ref | Expression |
|---|---|
| eubidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| eubidv | ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1554 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | eubidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | eubid 2064 | 1 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃!weu 2057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-4 1536 ax-17 1552 ax-ial 1560 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-eu 2060 |
| This theorem is referenced by: eubii 2066 eueq2dc 2956 eueq3dc 2957 reuhypd 4539 feu 5484 funfveu 5616 dff4im 5754 acexmid 5973 upxp 14911 dedekindicc 15272 |
| Copyright terms: Public domain | W3C validator |