ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eubidv GIF version

Theorem eubidv 2027
Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.)
Hypothesis
Ref Expression
eubidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
eubidv (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem eubidv
StepHypRef Expression
1 nfv 1521 . 2 𝑥𝜑
2 eubidv.1 . 2 (𝜑 → (𝜓𝜒))
31, 2eubid 2026 1 (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  ∃!weu 2019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-eu 2022
This theorem is referenced by:  eubii  2028  eueq2dc  2903  eueq3dc  2904  reuhypd  4456  feu  5380  funfveu  5509  dff4im  5642  acexmid  5852  upxp  13066  dedekindicc  13405
  Copyright terms: Public domain W3C validator