ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff4im Unicode version

Theorem dff4im 5725
Description: Property of a mapping. (Contributed by Jim Kingdon, 4-Jan-2019.)
Assertion
Ref Expression
dff4im  |-  ( F : A --> B  -> 
( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  e.  B  x F y ) )
Distinct variable groups:    x, y, A   
x, B, y    x, F, y

Proof of Theorem dff4im
StepHypRef Expression
1 dff3im 5724 . 2  |-  ( F : A --> B  -> 
( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  x F y ) )
2 df-br 4044 . . . . . . . 8  |-  ( x F y  <->  <. x ,  y >.  e.  F
)
3 ssel 3186 . . . . . . . . 9  |-  ( F 
C_  ( A  X.  B )  ->  ( <. x ,  y >.  e.  F  ->  <. x ,  y >.  e.  ( A  X.  B ) ) )
4 opelxp2 4709 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  y  e.  B )
53, 4syl6 33 . . . . . . . 8  |-  ( F 
C_  ( A  X.  B )  ->  ( <. x ,  y >.  e.  F  ->  y  e.  B ) )
62, 5biimtrid 152 . . . . . . 7  |-  ( F 
C_  ( A  X.  B )  ->  (
x F y  -> 
y  e.  B ) )
76pm4.71rd 394 . . . . . 6  |-  ( F 
C_  ( A  X.  B )  ->  (
x F y  <->  ( y  e.  B  /\  x F y ) ) )
87eubidv 2061 . . . . 5  |-  ( F 
C_  ( A  X.  B )  ->  ( E! y  x F
y  <->  E! y ( y  e.  B  /\  x F y ) ) )
9 df-reu 2490 . . . . 5  |-  ( E! y  e.  B  x F y  <->  E! y
( y  e.  B  /\  x F y ) )
108, 9bitr4di 198 . . . 4  |-  ( F 
C_  ( A  X.  B )  ->  ( E! y  x F
y  <->  E! y  e.  B  x F y ) )
1110ralbidv 2505 . . 3  |-  ( F 
C_  ( A  X.  B )  ->  ( A. x  e.  A  E! y  x F
y  <->  A. x  e.  A  E! y  e.  B  x F y ) )
1211pm5.32i 454 . 2  |-  ( ( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  x F y )  <-> 
( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  e.  B  x F y ) )
131, 12sylib 122 1  |-  ( F : A --> B  -> 
( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  e.  B  x F y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E!weu 2053    e. wcel 2175   A.wral 2483   E!wreu 2485    C_ wss 3165   <.cop 3635   class class class wbr 4043    X. cxp 4672   -->wf 5266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator