ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff4im Unicode version

Theorem dff4im 5704
Description: Property of a mapping. (Contributed by Jim Kingdon, 4-Jan-2019.)
Assertion
Ref Expression
dff4im  |-  ( F : A --> B  -> 
( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  e.  B  x F y ) )
Distinct variable groups:    x, y, A   
x, B, y    x, F, y

Proof of Theorem dff4im
StepHypRef Expression
1 dff3im 5703 . 2  |-  ( F : A --> B  -> 
( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  x F y ) )
2 df-br 4030 . . . . . . . 8  |-  ( x F y  <->  <. x ,  y >.  e.  F
)
3 ssel 3173 . . . . . . . . 9  |-  ( F 
C_  ( A  X.  B )  ->  ( <. x ,  y >.  e.  F  ->  <. x ,  y >.  e.  ( A  X.  B ) ) )
4 opelxp2 4694 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  y  e.  B )
53, 4syl6 33 . . . . . . . 8  |-  ( F 
C_  ( A  X.  B )  ->  ( <. x ,  y >.  e.  F  ->  y  e.  B ) )
62, 5biimtrid 152 . . . . . . 7  |-  ( F 
C_  ( A  X.  B )  ->  (
x F y  -> 
y  e.  B ) )
76pm4.71rd 394 . . . . . 6  |-  ( F 
C_  ( A  X.  B )  ->  (
x F y  <->  ( y  e.  B  /\  x F y ) ) )
87eubidv 2050 . . . . 5  |-  ( F 
C_  ( A  X.  B )  ->  ( E! y  x F
y  <->  E! y ( y  e.  B  /\  x F y ) ) )
9 df-reu 2479 . . . . 5  |-  ( E! y  e.  B  x F y  <->  E! y
( y  e.  B  /\  x F y ) )
108, 9bitr4di 198 . . . 4  |-  ( F 
C_  ( A  X.  B )  ->  ( E! y  x F
y  <->  E! y  e.  B  x F y ) )
1110ralbidv 2494 . . 3  |-  ( F 
C_  ( A  X.  B )  ->  ( A. x  e.  A  E! y  x F
y  <->  A. x  e.  A  E! y  e.  B  x F y ) )
1211pm5.32i 454 . 2  |-  ( ( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  x F y )  <-> 
( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  e.  B  x F y ) )
131, 12sylib 122 1  |-  ( F : A --> B  -> 
( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  e.  B  x F y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E!weu 2042    e. wcel 2164   A.wral 2472   E!wreu 2474    C_ wss 3153   <.cop 3621   class class class wbr 4029    X. cxp 4657   -->wf 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator