| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eusv1 | Unicode version | ||
| Description: Two ways to express
single-valuedness of a class expression
|
| Ref | Expression |
|---|---|
| eusv1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp 1535 |
. . . 4
| |
| 2 | sp 1535 |
. . . 4
| |
| 3 | eqtr3 2227 |
. . . 4
| |
| 4 | 1, 2, 3 | syl2an 289 |
. . 3
|
| 5 | 4 | gen2 1474 |
. 2
|
| 6 | eqeq1 2214 |
. . . 4
| |
| 7 | 6 | albidv 1848 |
. . 3
|
| 8 | 7 | eu4 2118 |
. 2
|
| 9 | 5, 8 | mpbiran2 944 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-cleq 2200 |
| This theorem is referenced by: eusvnfb 4519 |
| Copyright terms: Public domain | W3C validator |