ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusv1 Unicode version

Theorem eusv1 4483
Description: Two ways to express single-valuedness of a class expression  A ( x ). (Contributed by NM, 14-Oct-2010.)
Assertion
Ref Expression
eusv1  |-  ( E! y A. x  y  =  A  <->  E. y A. x  y  =  A )
Distinct variable groups:    x, y    y, A
Allowed substitution hint:    A( x)

Proof of Theorem eusv1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sp 1522 . . . 4  |-  ( A. x  y  =  A  ->  y  =  A )
2 sp 1522 . . . 4  |-  ( A. x  z  =  A  ->  z  =  A )
3 eqtr3 2213 . . . 4  |-  ( ( y  =  A  /\  z  =  A )  ->  y  =  z )
41, 2, 3syl2an 289 . . 3  |-  ( ( A. x  y  =  A  /\  A. x  z  =  A )  ->  y  =  z )
54gen2 1461 . 2  |-  A. y A. z ( ( A. x  y  =  A  /\  A. x  z  =  A )  ->  y  =  z )
6 eqeq1 2200 . . . 4  |-  ( y  =  z  ->  (
y  =  A  <->  z  =  A ) )
76albidv 1835 . . 3  |-  ( y  =  z  ->  ( A. x  y  =  A 
<-> 
A. x  z  =  A ) )
87eu4 2104 . 2  |-  ( E! y A. x  y  =  A  <->  ( E. y A. x  y  =  A  /\  A. y A. z ( ( A. x  y  =  A  /\  A. x  z  =  A )  ->  y  =  z ) ) )
95, 8mpbiran2 943 1  |-  ( E! y A. x  y  =  A  <->  E. y A. x  y  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364   E.wex 1503   E!weu 2042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-cleq 2186
This theorem is referenced by:  eusvnfb  4485
  Copyright terms: Public domain W3C validator