| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3 | Unicode version | ||
| Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) |
| Ref | Expression |
|---|---|
| eqtr3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2209 |
. 2
| |
| 2 | eqtr 2225 |
. 2
| |
| 3 | 1, 2 | sylan2b 287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: eueq 2951 euind 2967 reuind 2985 ssprsseq 3806 preqsn 3829 eusv1 4517 funopg 5324 funinsn 5342 foco 5531 funopdmsn 5787 mpofun 6070 enq0tr 7582 lteupri 7765 elrealeu 7977 rereceu 8037 receuap 8777 xrltso 9953 xrlttri3 9954 iseqf1olemab 10684 fsumparts 11896 odd2np1 12299 grpinveu 13485 exmidsbthrlem 16163 |
| Copyright terms: Public domain | W3C validator |