| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3 | Unicode version | ||
| Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) |
| Ref | Expression |
|---|---|
| eqtr3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2231 |
. 2
| |
| 2 | eqtr 2247 |
. 2
| |
| 3 | 1, 2 | sylan2b 287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: eueq 2974 euind 2990 reuind 3008 ssprsseq 3830 preqsn 3853 eusv1 4543 funopg 5352 funinsn 5370 foco 5559 funopdmsn 5819 mpofun 6106 enq0tr 7621 lteupri 7804 elrealeu 8016 rereceu 8076 receuap 8816 xrltso 9992 xrlttri3 9993 iseqf1olemab 10724 fsumparts 11981 odd2np1 12384 grpinveu 13571 exmidsbthrlem 16390 |
| Copyright terms: Public domain | W3C validator |