Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr3 | Unicode version |
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) |
Ref | Expression |
---|---|
eqtr3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2159 | . 2 | |
2 | eqtr 2175 | . 2 | |
3 | 1, 2 | sylan2b 285 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-4 1490 ax-17 1506 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-cleq 2150 |
This theorem is referenced by: eueq 2883 euind 2899 reuind 2917 preqsn 3738 eusv1 4411 funopg 5203 funinsn 5218 foco 5401 mpofun 5920 enq0tr 7348 lteupri 7531 elrealeu 7743 rereceu 7803 receuap 8537 xrltso 9696 xrlttri3 9697 iseqf1olemab 10381 fsumparts 11360 odd2np1 11756 exmidsbthrlem 13564 |
Copyright terms: Public domain | W3C validator |