ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusvnfb Unicode version

Theorem eusvnfb 4383
Description: Two ways to say that  A ( x ) is a set expression that does not depend on  x. (Contributed by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
eusvnfb  |-  ( E! y A. x  y  =  A  <->  ( F/_ x A  /\  A  e. 
_V ) )
Distinct variable groups:    x, y    y, A
Allowed substitution hint:    A( x)

Proof of Theorem eusvnfb
StepHypRef Expression
1 eusvnf 4382 . . 3  |-  ( E! y A. x  y  =  A  ->  F/_ x A )
2 euex 2030 . . . 4  |-  ( E! y A. x  y  =  A  ->  E. y A. x  y  =  A )
3 id 19 . . . . . . 7  |-  ( y  =  A  ->  y  =  A )
4 vex 2692 . . . . . . 7  |-  y  e. 
_V
53, 4eqeltrrdi 2232 . . . . . 6  |-  ( y  =  A  ->  A  e.  _V )
65sps 1518 . . . . 5  |-  ( A. x  y  =  A  ->  A  e.  _V )
76exlimiv 1578 . . . 4  |-  ( E. y A. x  y  =  A  ->  A  e.  _V )
82, 7syl 14 . . 3  |-  ( E! y A. x  y  =  A  ->  A  e.  _V )
91, 8jca 304 . 2  |-  ( E! y A. x  y  =  A  ->  ( F/_ x A  /\  A  e.  _V ) )
10 isset 2695 . . . . 5  |-  ( A  e.  _V  <->  E. y 
y  =  A )
11 nfcvd 2283 . . . . . . . 8  |-  ( F/_ x A  ->  F/_ x
y )
12 id 19 . . . . . . . 8  |-  ( F/_ x A  ->  F/_ x A )
1311, 12nfeqd 2297 . . . . . . 7  |-  ( F/_ x A  ->  F/ x  y  =  A )
1413nfrd 1501 . . . . . 6  |-  ( F/_ x A  ->  ( y  =  A  ->  A. x  y  =  A )
)
1514eximdv 1853 . . . . 5  |-  ( F/_ x A  ->  ( E. y  y  =  A  ->  E. y A. x  y  =  A )
)
1610, 15syl5bi 151 . . . 4  |-  ( F/_ x A  ->  ( A  e.  _V  ->  E. y A. x  y  =  A ) )
1716imp 123 . . 3  |-  ( (
F/_ x A  /\  A  e.  _V )  ->  E. y A. x  y  =  A )
18 eusv1 4381 . . 3  |-  ( E! y A. x  y  =  A  <->  E. y A. x  y  =  A )
1917, 18sylibr 133 . 2  |-  ( (
F/_ x A  /\  A  e.  _V )  ->  E! y A. x  y  =  A )
209, 19impbii 125 1  |-  ( E! y A. x  y  =  A  <->  ( F/_ x A  /\  A  e. 
_V ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   A.wal 1330    = wceq 1332   E.wex 1469    e. wcel 1481   E!weu 2000   F/_wnfc 2269   _Vcvv 2689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2691  df-sbc 2914  df-csb 3008
This theorem is referenced by:  eusv2nf  4385  eusv2  4386
  Copyright terms: Public domain W3C validator