ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusv1 GIF version

Theorem eusv1 4504
Description: Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.)
Assertion
Ref Expression
eusv1 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ ∃𝑦𝑥 𝑦 = 𝐴)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem eusv1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sp 1535 . . . 4 (∀𝑥 𝑦 = 𝐴𝑦 = 𝐴)
2 sp 1535 . . . 4 (∀𝑥 𝑧 = 𝐴𝑧 = 𝐴)
3 eqtr3 2226 . . . 4 ((𝑦 = 𝐴𝑧 = 𝐴) → 𝑦 = 𝑧)
41, 2, 3syl2an 289 . . 3 ((∀𝑥 𝑦 = 𝐴 ∧ ∀𝑥 𝑧 = 𝐴) → 𝑦 = 𝑧)
54gen2 1474 . 2 𝑦𝑧((∀𝑥 𝑦 = 𝐴 ∧ ∀𝑥 𝑧 = 𝐴) → 𝑦 = 𝑧)
6 eqeq1 2213 . . . 4 (𝑦 = 𝑧 → (𝑦 = 𝐴𝑧 = 𝐴))
76albidv 1848 . . 3 (𝑦 = 𝑧 → (∀𝑥 𝑦 = 𝐴 ↔ ∀𝑥 𝑧 = 𝐴))
87eu4 2117 . 2 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ (∃𝑦𝑥 𝑦 = 𝐴 ∧ ∀𝑦𝑧((∀𝑥 𝑦 = 𝐴 ∧ ∀𝑥 𝑧 = 𝐴) → 𝑦 = 𝑧)))
95, 8mpbiran2 944 1 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ ∃𝑦𝑥 𝑦 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371   = wceq 1373  wex 1516  ∃!weu 2055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-cleq 2199
This theorem is referenced by:  eusvnfb  4506
  Copyright terms: Public domain W3C validator