ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusv1 GIF version

Theorem eusv1 4452
Description: Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.)
Assertion
Ref Expression
eusv1 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ ∃𝑦𝑥 𝑦 = 𝐴)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem eusv1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sp 1511 . . . 4 (∀𝑥 𝑦 = 𝐴𝑦 = 𝐴)
2 sp 1511 . . . 4 (∀𝑥 𝑧 = 𝐴𝑧 = 𝐴)
3 eqtr3 2197 . . . 4 ((𝑦 = 𝐴𝑧 = 𝐴) → 𝑦 = 𝑧)
41, 2, 3syl2an 289 . . 3 ((∀𝑥 𝑦 = 𝐴 ∧ ∀𝑥 𝑧 = 𝐴) → 𝑦 = 𝑧)
54gen2 1450 . 2 𝑦𝑧((∀𝑥 𝑦 = 𝐴 ∧ ∀𝑥 𝑧 = 𝐴) → 𝑦 = 𝑧)
6 eqeq1 2184 . . . 4 (𝑦 = 𝑧 → (𝑦 = 𝐴𝑧 = 𝐴))
76albidv 1824 . . 3 (𝑦 = 𝑧 → (∀𝑥 𝑦 = 𝐴 ↔ ∀𝑥 𝑧 = 𝐴))
87eu4 2088 . 2 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ (∃𝑦𝑥 𝑦 = 𝐴 ∧ ∀𝑦𝑧((∀𝑥 𝑦 = 𝐴 ∧ ∀𝑥 𝑧 = 𝐴) → 𝑦 = 𝑧)))
95, 8mpbiran2 941 1 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ ∃𝑦𝑥 𝑦 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1351   = wceq 1353  wex 1492  ∃!weu 2026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-cleq 2170
This theorem is referenced by:  eusvnfb  4454
  Copyright terms: Public domain W3C validator