ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusv1 GIF version

Theorem eusv1 4467
Description: Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.)
Assertion
Ref Expression
eusv1 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ ∃𝑦𝑥 𝑦 = 𝐴)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem eusv1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sp 1522 . . . 4 (∀𝑥 𝑦 = 𝐴𝑦 = 𝐴)
2 sp 1522 . . . 4 (∀𝑥 𝑧 = 𝐴𝑧 = 𝐴)
3 eqtr3 2209 . . . 4 ((𝑦 = 𝐴𝑧 = 𝐴) → 𝑦 = 𝑧)
41, 2, 3syl2an 289 . . 3 ((∀𝑥 𝑦 = 𝐴 ∧ ∀𝑥 𝑧 = 𝐴) → 𝑦 = 𝑧)
54gen2 1461 . 2 𝑦𝑧((∀𝑥 𝑦 = 𝐴 ∧ ∀𝑥 𝑧 = 𝐴) → 𝑦 = 𝑧)
6 eqeq1 2196 . . . 4 (𝑦 = 𝑧 → (𝑦 = 𝐴𝑧 = 𝐴))
76albidv 1835 . . 3 (𝑦 = 𝑧 → (∀𝑥 𝑦 = 𝐴 ↔ ∀𝑥 𝑧 = 𝐴))
87eu4 2100 . 2 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ (∃𝑦𝑥 𝑦 = 𝐴 ∧ ∀𝑦𝑧((∀𝑥 𝑦 = 𝐴 ∧ ∀𝑥 𝑧 = 𝐴) → 𝑦 = 𝑧)))
95, 8mpbiran2 943 1 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ ∃𝑦𝑥 𝑦 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362   = wceq 1364  wex 1503  ∃!weu 2038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-cleq 2182
This theorem is referenced by:  eusvnfb  4469
  Copyright terms: Public domain W3C validator