Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusvobj1 Unicode version

Theorem eusvobj1 5764
 Description: Specify the same object in two ways when class is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
Hypothesis
Ref Expression
eusvobj1.1
Assertion
Ref Expression
eusvobj1
Distinct variable groups:   ,,   ,
Allowed substitution hint:   ()

Proof of Theorem eusvobj1
StepHypRef Expression
1 nfeu1 2010 . . 3
2 eusvobj1.1 . . . 4
32eusvobj2 5763 . . 3
41, 3alrimi 1502 . 2
5 iotabi 5100 . 2
64, 5syl 14 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 104  wal 1329   wceq 1331   wcel 1480  weu 1999  wral 2416  wrex 2417  cvv 2686  cio 5089 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-csb 3004  df-sn 3533  df-uni 3740  df-iota 5091 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator