ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusvobj1 Unicode version

Theorem eusvobj1 5930
Description: Specify the same object in two ways when class  B ( y ) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
Hypothesis
Ref Expression
eusvobj1.1  |-  B  e. 
_V
Assertion
Ref Expression
eusvobj1  |-  ( E! x E. y  e.  A  x  =  B  ->  ( iota x E. y  e.  A  x  =  B )  =  ( iota x A. y  e.  A  x  =  B )
)
Distinct variable groups:    x, y, A   
x, B
Allowed substitution hint:    B( y)

Proof of Theorem eusvobj1
StepHypRef Expression
1 nfeu1 2064 . . 3  |-  F/ x E! x E. y  e.  A  x  =  B
2 eusvobj1.1 . . . 4  |-  B  e. 
_V
32eusvobj2 5929 . . 3  |-  ( E! x E. y  e.  A  x  =  B  ->  ( E. y  e.  A  x  =  B 
<-> 
A. y  e.  A  x  =  B )
)
41, 3alrimi 1544 . 2  |-  ( E! x E. y  e.  A  x  =  B  ->  A. x ( E. y  e.  A  x  =  B  <->  A. y  e.  A  x  =  B ) )
5 iotabi 5240 . 2  |-  ( A. x ( E. y  e.  A  x  =  B 
<-> 
A. y  e.  A  x  =  B )  ->  ( iota x E. y  e.  A  x  =  B )  =  ( iota x A. y  e.  A  x  =  B ) )
64, 5syl 14 1  |-  ( E! x E. y  e.  A  x  =  B  ->  ( iota x E. y  e.  A  x  =  B )  =  ( iota x A. y  e.  A  x  =  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1370    = wceq 1372   E!weu 2053    e. wcel 2175   A.wral 2483   E.wrex 2484   _Vcvv 2771   iotacio 5229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-csb 3093  df-sn 3638  df-uni 3850  df-iota 5231
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator