ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1elima Unicode version

Theorem f1elima 5741
Description: Membership in the image of a 1-1 map. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
f1elima  |-  ( ( F : A -1-1-> B  /\  X  e.  A  /\  Y  C_  A )  ->  ( ( F `
 X )  e.  ( F " Y
)  <->  X  e.  Y
) )

Proof of Theorem f1elima
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 f1fn 5395 . . . 4  |-  ( F : A -1-1-> B  ->  F  Fn  A )
2 fvelimab 5542 . . . 4  |-  ( ( F  Fn  A  /\  Y  C_  A )  -> 
( ( F `  X )  e.  ( F " Y )  <->  E. z  e.  Y  ( F `  z )  =  ( F `  X ) ) )
31, 2sylan 281 . . 3  |-  ( ( F : A -1-1-> B  /\  Y  C_  A )  ->  ( ( F `
 X )  e.  ( F " Y
)  <->  E. z  e.  Y  ( F `  z )  =  ( F `  X ) ) )
433adant2 1006 . 2  |-  ( ( F : A -1-1-> B  /\  X  e.  A  /\  Y  C_  A )  ->  ( ( F `
 X )  e.  ( F " Y
)  <->  E. z  e.  Y  ( F `  z )  =  ( F `  X ) ) )
5 ssel 3136 . . . . . . . 8  |-  ( Y 
C_  A  ->  (
z  e.  Y  -> 
z  e.  A ) )
65impac 379 . . . . . . 7  |-  ( ( Y  C_  A  /\  z  e.  Y )  ->  ( z  e.  A  /\  z  e.  Y
) )
7 f1fveq 5740 . . . . . . . . . . . 12  |-  ( ( F : A -1-1-> B  /\  ( z  e.  A  /\  X  e.  A
) )  ->  (
( F `  z
)  =  ( F `
 X )  <->  z  =  X ) )
87ancom2s 556 . . . . . . . . . . 11  |-  ( ( F : A -1-1-> B  /\  ( X  e.  A  /\  z  e.  A
) )  ->  (
( F `  z
)  =  ( F `
 X )  <->  z  =  X ) )
98biimpd 143 . . . . . . . . . 10  |-  ( ( F : A -1-1-> B  /\  ( X  e.  A  /\  z  e.  A
) )  ->  (
( F `  z
)  =  ( F `
 X )  -> 
z  =  X ) )
109anassrs 398 . . . . . . . . 9  |-  ( ( ( F : A -1-1-> B  /\  X  e.  A
)  /\  z  e.  A )  ->  (
( F `  z
)  =  ( F `
 X )  -> 
z  =  X ) )
11 eleq1 2229 . . . . . . . . . 10  |-  ( z  =  X  ->  (
z  e.  Y  <->  X  e.  Y ) )
1211biimpcd 158 . . . . . . . . 9  |-  ( z  e.  Y  ->  (
z  =  X  ->  X  e.  Y )
)
1310, 12sylan9 407 . . . . . . . 8  |-  ( ( ( ( F : A -1-1-> B  /\  X  e.  A )  /\  z  e.  A )  /\  z  e.  Y )  ->  (
( F `  z
)  =  ( F `
 X )  ->  X  e.  Y )
)
1413anasss 397 . . . . . . 7  |-  ( ( ( F : A -1-1-> B  /\  X  e.  A
)  /\  ( z  e.  A  /\  z  e.  Y ) )  -> 
( ( F `  z )  =  ( F `  X )  ->  X  e.  Y
) )
156, 14sylan2 284 . . . . . 6  |-  ( ( ( F : A -1-1-> B  /\  X  e.  A
)  /\  ( Y  C_  A  /\  z  e.  Y ) )  -> 
( ( F `  z )  =  ( F `  X )  ->  X  e.  Y
) )
1615anassrs 398 . . . . 5  |-  ( ( ( ( F : A -1-1-> B  /\  X  e.  A )  /\  Y  C_  A )  /\  z  e.  Y )  ->  (
( F `  z
)  =  ( F `
 X )  ->  X  e.  Y )
)
1716rexlimdva 2583 . . . 4  |-  ( ( ( F : A -1-1-> B  /\  X  e.  A
)  /\  Y  C_  A
)  ->  ( E. z  e.  Y  ( F `  z )  =  ( F `  X )  ->  X  e.  Y ) )
18173impa 1184 . . 3  |-  ( ( F : A -1-1-> B  /\  X  e.  A  /\  Y  C_  A )  ->  ( E. z  e.  Y  ( F `  z )  =  ( F `  X )  ->  X  e.  Y
) )
19 eqid 2165 . . . 4  |-  ( F `
 X )  =  ( F `  X
)
20 fveq2 5486 . . . . . 6  |-  ( z  =  X  ->  ( F `  z )  =  ( F `  X ) )
2120eqeq1d 2174 . . . . 5  |-  ( z  =  X  ->  (
( F `  z
)  =  ( F `
 X )  <->  ( F `  X )  =  ( F `  X ) ) )
2221rspcev 2830 . . . 4  |-  ( ( X  e.  Y  /\  ( F `  X )  =  ( F `  X ) )  ->  E. z  e.  Y  ( F `  z )  =  ( F `  X ) )
2319, 22mpan2 422 . . 3  |-  ( X  e.  Y  ->  E. z  e.  Y  ( F `  z )  =  ( F `  X ) )
2418, 23impbid1 141 . 2  |-  ( ( F : A -1-1-> B  /\  X  e.  A  /\  Y  C_  A )  ->  ( E. z  e.  Y  ( F `  z )  =  ( F `  X )  <-> 
X  e.  Y ) )
254, 24bitrd 187 1  |-  ( ( F : A -1-1-> B  /\  X  e.  A  /\  Y  C_  A )  ->  ( ( F `
 X )  e.  ( F " Y
)  <->  X  e.  Y
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   E.wrex 2445    C_ wss 3116   "cima 4607    Fn wfn 5183   -1-1->wf1 5185   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fv 5196
This theorem is referenced by:  f1imass  5742  iseqf1olemnab  10423  fprodssdc  11531  ctinfom  12361  ssnnctlemct  12379
  Copyright terms: Public domain W3C validator