ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1elima Unicode version

Theorem f1elima 5865
Description: Membership in the image of a 1-1 map. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
f1elima  |-  ( ( F : A -1-1-> B  /\  X  e.  A  /\  Y  C_  A )  ->  ( ( F `
 X )  e.  ( F " Y
)  <->  X  e.  Y
) )

Proof of Theorem f1elima
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 f1fn 5505 . . . 4  |-  ( F : A -1-1-> B  ->  F  Fn  A )
2 fvelimab 5658 . . . 4  |-  ( ( F  Fn  A  /\  Y  C_  A )  -> 
( ( F `  X )  e.  ( F " Y )  <->  E. z  e.  Y  ( F `  z )  =  ( F `  X ) ) )
31, 2sylan 283 . . 3  |-  ( ( F : A -1-1-> B  /\  Y  C_  A )  ->  ( ( F `
 X )  e.  ( F " Y
)  <->  E. z  e.  Y  ( F `  z )  =  ( F `  X ) ) )
433adant2 1019 . 2  |-  ( ( F : A -1-1-> B  /\  X  e.  A  /\  Y  C_  A )  ->  ( ( F `
 X )  e.  ( F " Y
)  <->  E. z  e.  Y  ( F `  z )  =  ( F `  X ) ) )
5 ssel 3195 . . . . . . . 8  |-  ( Y 
C_  A  ->  (
z  e.  Y  -> 
z  e.  A ) )
65impac 381 . . . . . . 7  |-  ( ( Y  C_  A  /\  z  e.  Y )  ->  ( z  e.  A  /\  z  e.  Y
) )
7 f1fveq 5864 . . . . . . . . . . . 12  |-  ( ( F : A -1-1-> B  /\  ( z  e.  A  /\  X  e.  A
) )  ->  (
( F `  z
)  =  ( F `
 X )  <->  z  =  X ) )
87ancom2s 566 . . . . . . . . . . 11  |-  ( ( F : A -1-1-> B  /\  ( X  e.  A  /\  z  e.  A
) )  ->  (
( F `  z
)  =  ( F `
 X )  <->  z  =  X ) )
98biimpd 144 . . . . . . . . . 10  |-  ( ( F : A -1-1-> B  /\  ( X  e.  A  /\  z  e.  A
) )  ->  (
( F `  z
)  =  ( F `
 X )  -> 
z  =  X ) )
109anassrs 400 . . . . . . . . 9  |-  ( ( ( F : A -1-1-> B  /\  X  e.  A
)  /\  z  e.  A )  ->  (
( F `  z
)  =  ( F `
 X )  -> 
z  =  X ) )
11 eleq1 2270 . . . . . . . . . 10  |-  ( z  =  X  ->  (
z  e.  Y  <->  X  e.  Y ) )
1211biimpcd 159 . . . . . . . . 9  |-  ( z  e.  Y  ->  (
z  =  X  ->  X  e.  Y )
)
1310, 12sylan9 409 . . . . . . . 8  |-  ( ( ( ( F : A -1-1-> B  /\  X  e.  A )  /\  z  e.  A )  /\  z  e.  Y )  ->  (
( F `  z
)  =  ( F `
 X )  ->  X  e.  Y )
)
1413anasss 399 . . . . . . 7  |-  ( ( ( F : A -1-1-> B  /\  X  e.  A
)  /\  ( z  e.  A  /\  z  e.  Y ) )  -> 
( ( F `  z )  =  ( F `  X )  ->  X  e.  Y
) )
156, 14sylan2 286 . . . . . 6  |-  ( ( ( F : A -1-1-> B  /\  X  e.  A
)  /\  ( Y  C_  A  /\  z  e.  Y ) )  -> 
( ( F `  z )  =  ( F `  X )  ->  X  e.  Y
) )
1615anassrs 400 . . . . 5  |-  ( ( ( ( F : A -1-1-> B  /\  X  e.  A )  /\  Y  C_  A )  /\  z  e.  Y )  ->  (
( F `  z
)  =  ( F `
 X )  ->  X  e.  Y )
)
1716rexlimdva 2625 . . . 4  |-  ( ( ( F : A -1-1-> B  /\  X  e.  A
)  /\  Y  C_  A
)  ->  ( E. z  e.  Y  ( F `  z )  =  ( F `  X )  ->  X  e.  Y ) )
18173impa 1197 . . 3  |-  ( ( F : A -1-1-> B  /\  X  e.  A  /\  Y  C_  A )  ->  ( E. z  e.  Y  ( F `  z )  =  ( F `  X )  ->  X  e.  Y
) )
19 eqid 2207 . . . 4  |-  ( F `
 X )  =  ( F `  X
)
20 fveq2 5599 . . . . . 6  |-  ( z  =  X  ->  ( F `  z )  =  ( F `  X ) )
2120eqeq1d 2216 . . . . 5  |-  ( z  =  X  ->  (
( F `  z
)  =  ( F `
 X )  <->  ( F `  X )  =  ( F `  X ) ) )
2221rspcev 2884 . . . 4  |-  ( ( X  e.  Y  /\  ( F `  X )  =  ( F `  X ) )  ->  E. z  e.  Y  ( F `  z )  =  ( F `  X ) )
2319, 22mpan2 425 . . 3  |-  ( X  e.  Y  ->  E. z  e.  Y  ( F `  z )  =  ( F `  X ) )
2418, 23impbid1 142 . 2  |-  ( ( F : A -1-1-> B  /\  X  e.  A  /\  Y  C_  A )  ->  ( E. z  e.  Y  ( F `  z )  =  ( F `  X )  <-> 
X  e.  Y ) )
254, 24bitrd 188 1  |-  ( ( F : A -1-1-> B  /\  X  e.  A  /\  Y  C_  A )  ->  ( ( F `
 X )  e.  ( F " Y
)  <->  X  e.  Y
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   E.wrex 2487    C_ wss 3174   "cima 4696    Fn wfn 5285   -1-1->wf1 5287   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fv 5298
This theorem is referenced by:  f1imass  5866  iseqf1olemnab  10683  fprodssdc  12016  ctinfom  12914  ssnnctlemct  12932
  Copyright terms: Public domain W3C validator