Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1elima | Unicode version |
Description: Membership in the image of a 1-1 map. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
f1elima |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fn 5395 | . . . 4 | |
2 | fvelimab 5542 | . . . 4 | |
3 | 1, 2 | sylan 281 | . . 3 |
4 | 3 | 3adant2 1006 | . 2 |
5 | ssel 3136 | . . . . . . . 8 | |
6 | 5 | impac 379 | . . . . . . 7 |
7 | f1fveq 5740 | . . . . . . . . . . . 12 | |
8 | 7 | ancom2s 556 | . . . . . . . . . . 11 |
9 | 8 | biimpd 143 | . . . . . . . . . 10 |
10 | 9 | anassrs 398 | . . . . . . . . 9 |
11 | eleq1 2229 | . . . . . . . . . 10 | |
12 | 11 | biimpcd 158 | . . . . . . . . 9 |
13 | 10, 12 | sylan9 407 | . . . . . . . 8 |
14 | 13 | anasss 397 | . . . . . . 7 |
15 | 6, 14 | sylan2 284 | . . . . . 6 |
16 | 15 | anassrs 398 | . . . . 5 |
17 | 16 | rexlimdva 2583 | . . . 4 |
18 | 17 | 3impa 1184 | . . 3 |
19 | eqid 2165 | . . . 4 | |
20 | fveq2 5486 | . . . . . 6 | |
21 | 20 | eqeq1d 2174 | . . . . 5 |
22 | 21 | rspcev 2830 | . . . 4 |
23 | 19, 22 | mpan2 422 | . . 3 |
24 | 18, 23 | impbid1 141 | . 2 |
25 | 4, 24 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 wrex 2445 wss 3116 cima 4607 wfn 5183 wf1 5185 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fv 5196 |
This theorem is referenced by: f1imass 5742 iseqf1olemnab 10423 fprodssdc 11531 ctinfom 12361 ssnnctlemct 12379 |
Copyright terms: Public domain | W3C validator |