| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1elima | Unicode version | ||
| Description: Membership in the image of a 1-1 map. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| f1elima |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn 5483 |
. . . 4
| |
| 2 | fvelimab 5635 |
. . . 4
| |
| 3 | 1, 2 | sylan 283 |
. . 3
|
| 4 | 3 | 3adant2 1019 |
. 2
|
| 5 | ssel 3187 |
. . . . . . . 8
| |
| 6 | 5 | impac 381 |
. . . . . . 7
|
| 7 | f1fveq 5841 |
. . . . . . . . . . . 12
| |
| 8 | 7 | ancom2s 566 |
. . . . . . . . . . 11
|
| 9 | 8 | biimpd 144 |
. . . . . . . . . 10
|
| 10 | 9 | anassrs 400 |
. . . . . . . . 9
|
| 11 | eleq1 2268 |
. . . . . . . . . 10
| |
| 12 | 11 | biimpcd 159 |
. . . . . . . . 9
|
| 13 | 10, 12 | sylan9 409 |
. . . . . . . 8
|
| 14 | 13 | anasss 399 |
. . . . . . 7
|
| 15 | 6, 14 | sylan2 286 |
. . . . . 6
|
| 16 | 15 | anassrs 400 |
. . . . 5
|
| 17 | 16 | rexlimdva 2623 |
. . . 4
|
| 18 | 17 | 3impa 1197 |
. . 3
|
| 19 | eqid 2205 |
. . . 4
| |
| 20 | fveq2 5576 |
. . . . . 6
| |
| 21 | 20 | eqeq1d 2214 |
. . . . 5
|
| 22 | 21 | rspcev 2877 |
. . . 4
|
| 23 | 19, 22 | mpan2 425 |
. . 3
|
| 24 | 18, 23 | impbid1 142 |
. 2
|
| 25 | 4, 24 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fv 5279 |
| This theorem is referenced by: f1imass 5843 iseqf1olemnab 10646 fprodssdc 11901 ctinfom 12799 ssnnctlemct 12817 |
| Copyright terms: Public domain | W3C validator |