| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1elima | Unicode version | ||
| Description: Membership in the image of a 1-1 map. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| f1elima |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn 5465 |
. . . 4
| |
| 2 | fvelimab 5617 |
. . . 4
| |
| 3 | 1, 2 | sylan 283 |
. . 3
|
| 4 | 3 | 3adant2 1018 |
. 2
|
| 5 | ssel 3177 |
. . . . . . . 8
| |
| 6 | 5 | impac 381 |
. . . . . . 7
|
| 7 | f1fveq 5819 |
. . . . . . . . . . . 12
| |
| 8 | 7 | ancom2s 566 |
. . . . . . . . . . 11
|
| 9 | 8 | biimpd 144 |
. . . . . . . . . 10
|
| 10 | 9 | anassrs 400 |
. . . . . . . . 9
|
| 11 | eleq1 2259 |
. . . . . . . . . 10
| |
| 12 | 11 | biimpcd 159 |
. . . . . . . . 9
|
| 13 | 10, 12 | sylan9 409 |
. . . . . . . 8
|
| 14 | 13 | anasss 399 |
. . . . . . 7
|
| 15 | 6, 14 | sylan2 286 |
. . . . . 6
|
| 16 | 15 | anassrs 400 |
. . . . 5
|
| 17 | 16 | rexlimdva 2614 |
. . . 4
|
| 18 | 17 | 3impa 1196 |
. . 3
|
| 19 | eqid 2196 |
. . . 4
| |
| 20 | fveq2 5558 |
. . . . . 6
| |
| 21 | 20 | eqeq1d 2205 |
. . . . 5
|
| 22 | 21 | rspcev 2868 |
. . . 4
|
| 23 | 19, 22 | mpan2 425 |
. . 3
|
| 24 | 18, 23 | impbid1 142 |
. 2
|
| 25 | 4, 24 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fv 5266 |
| This theorem is referenced by: f1imass 5821 iseqf1olemnab 10593 fprodssdc 11755 ctinfom 12645 ssnnctlemct 12663 |
| Copyright terms: Public domain | W3C validator |