Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1elima | Unicode version |
Description: Membership in the image of a 1-1 map. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
f1elima |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fn 5405 | . . . 4 | |
2 | fvelimab 5552 | . . . 4 | |
3 | 1, 2 | sylan 281 | . . 3 |
4 | 3 | 3adant2 1011 | . 2 |
5 | ssel 3141 | . . . . . . . 8 | |
6 | 5 | impac 379 | . . . . . . 7 |
7 | f1fveq 5751 | . . . . . . . . . . . 12 | |
8 | 7 | ancom2s 561 | . . . . . . . . . . 11 |
9 | 8 | biimpd 143 | . . . . . . . . . 10 |
10 | 9 | anassrs 398 | . . . . . . . . 9 |
11 | eleq1 2233 | . . . . . . . . . 10 | |
12 | 11 | biimpcd 158 | . . . . . . . . 9 |
13 | 10, 12 | sylan9 407 | . . . . . . . 8 |
14 | 13 | anasss 397 | . . . . . . 7 |
15 | 6, 14 | sylan2 284 | . . . . . 6 |
16 | 15 | anassrs 398 | . . . . 5 |
17 | 16 | rexlimdva 2587 | . . . 4 |
18 | 17 | 3impa 1189 | . . 3 |
19 | eqid 2170 | . . . 4 | |
20 | fveq2 5496 | . . . . . 6 | |
21 | 20 | eqeq1d 2179 | . . . . 5 |
22 | 21 | rspcev 2834 | . . . 4 |
23 | 19, 22 | mpan2 423 | . . 3 |
24 | 18, 23 | impbid1 141 | . 2 |
25 | 4, 24 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wrex 2449 wss 3121 cima 4614 wfn 5193 wf1 5195 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fv 5206 |
This theorem is referenced by: f1imass 5753 iseqf1olemnab 10444 fprodssdc 11553 ctinfom 12383 ssnnctlemct 12401 |
Copyright terms: Public domain | W3C validator |