ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1finf1o Unicode version

Theorem f1finf1o 7114
Description: Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.)
Assertion
Ref Expression
f1finf1o  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( F : A -1-1-> B  <-> 
F : A -1-1-onto-> B ) )

Proof of Theorem f1finf1o
StepHypRef Expression
1 simpr 110 . . . 4  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  F : A -1-1-> B )
2 simplr 528 . . . . 5  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  B  e.  Fin )
3 f1rn 5532 . . . . . 6  |-  ( F : A -1-1-> B  ->  ran  F  C_  B )
43adantl 277 . . . . 5  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  ran  F  C_  B )
5 f1fn 5533 . . . . . . . . 9  |-  ( F : A -1-1-> B  ->  F  Fn  A )
6 fnima 5442 . . . . . . . . 9  |-  ( F  Fn  A  ->  ( F " A )  =  ran  F )
75, 6syl 14 . . . . . . . 8  |-  ( F : A -1-1-> B  -> 
( F " A
)  =  ran  F
)
87adantl 277 . . . . . . 7  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  ( F " A )  =  ran  F )
9 ssid 3244 . . . . . . . . 9  |-  A  C_  A
109a1i 9 . . . . . . . 8  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  A  C_  A
)
11 simpll 527 . . . . . . . . 9  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  A  ~~  B )
12 enfii 7036 . . . . . . . . 9  |-  ( ( B  e.  Fin  /\  A  ~~  B )  ->  A  e.  Fin )
132, 11, 12syl2anc 411 . . . . . . . 8  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  A  e.  Fin )
14 f1imaeng 6944 . . . . . . . 8  |-  ( ( F : A -1-1-> B  /\  A  C_  A  /\  A  e.  Fin )  ->  ( F " A
)  ~~  A )
151, 10, 13, 14syl3anc 1271 . . . . . . 7  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  ( F " A )  ~~  A
)
168, 15eqbrtrrd 4107 . . . . . 6  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  ran  F  ~~  A )
17 entr 6936 . . . . . 6  |-  ( ( ran  F  ~~  A  /\  A  ~~  B )  ->  ran  F  ~~  B )
1816, 11, 17syl2anc 411 . . . . 5  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  ran  F  ~~  B )
19 fisseneq 7096 . . . . 5  |-  ( ( B  e.  Fin  /\  ran  F  C_  B  /\  ran  F  ~~  B )  ->  ran  F  =  B )
202, 4, 18, 19syl3anc 1271 . . . 4  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  ran  F  =  B )
21 dff1o5 5581 . . . 4  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  ran  F  =  B ) )
221, 20, 21sylanbrc 417 . . 3  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  F : A
-1-1-onto-> B )
2322ex 115 . 2  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( F : A -1-1-> B  ->  F : A -1-1-onto-> B
) )
24 f1of1 5571 . 2  |-  ( F : A -1-1-onto-> B  ->  F : A -1-1-> B )
2523, 24impbid1 142 1  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( F : A -1-1-> B  <-> 
F : A -1-1-onto-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    C_ wss 3197   class class class wbr 4083   ran crn 4720   "cima 4722    Fn wfn 5313   -1-1->wf1 5315   -1-1-onto->wf1o 5317    ~~ cen 6885   Fincfn 6887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1o 6562  df-er 6680  df-en 6888  df-fin 6890
This theorem is referenced by:  iseqf1olemqf1o  10728  crth  12746  eulerthlemh  12753  lgseisenlem2  15750  pwf1oexmid  16365
  Copyright terms: Public domain W3C validator