ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1finf1o Unicode version

Theorem f1finf1o 6843
Description: Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.)
Assertion
Ref Expression
f1finf1o  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( F : A -1-1-> B  <-> 
F : A -1-1-onto-> B ) )

Proof of Theorem f1finf1o
StepHypRef Expression
1 simpr 109 . . . 4  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  F : A -1-1-> B )
2 simplr 520 . . . . 5  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  B  e.  Fin )
3 f1rn 5337 . . . . . 6  |-  ( F : A -1-1-> B  ->  ran  F  C_  B )
43adantl 275 . . . . 5  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  ran  F  C_  B )
5 f1fn 5338 . . . . . . . . 9  |-  ( F : A -1-1-> B  ->  F  Fn  A )
6 fnima 5249 . . . . . . . . 9  |-  ( F  Fn  A  ->  ( F " A )  =  ran  F )
75, 6syl 14 . . . . . . . 8  |-  ( F : A -1-1-> B  -> 
( F " A
)  =  ran  F
)
87adantl 275 . . . . . . 7  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  ( F " A )  =  ran  F )
9 ssid 3122 . . . . . . . . 9  |-  A  C_  A
109a1i 9 . . . . . . . 8  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  A  C_  A
)
11 simpll 519 . . . . . . . . 9  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  A  ~~  B )
12 enfii 6776 . . . . . . . . 9  |-  ( ( B  e.  Fin  /\  A  ~~  B )  ->  A  e.  Fin )
132, 11, 12syl2anc 409 . . . . . . . 8  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  A  e.  Fin )
14 f1imaeng 6694 . . . . . . . 8  |-  ( ( F : A -1-1-> B  /\  A  C_  A  /\  A  e.  Fin )  ->  ( F " A
)  ~~  A )
151, 10, 13, 14syl3anc 1217 . . . . . . 7  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  ( F " A )  ~~  A
)
168, 15eqbrtrrd 3960 . . . . . 6  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  ran  F  ~~  A )
17 entr 6686 . . . . . 6  |-  ( ( ran  F  ~~  A  /\  A  ~~  B )  ->  ran  F  ~~  B )
1816, 11, 17syl2anc 409 . . . . 5  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  ran  F  ~~  B )
19 fisseneq 6828 . . . . 5  |-  ( ( B  e.  Fin  /\  ran  F  C_  B  /\  ran  F  ~~  B )  ->  ran  F  =  B )
202, 4, 18, 19syl3anc 1217 . . . 4  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  ran  F  =  B )
21 dff1o5 5384 . . . 4  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  ran  F  =  B ) )
221, 20, 21sylanbrc 414 . . 3  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  F : A
-1-1-onto-> B )
2322ex 114 . 2  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( F : A -1-1-> B  ->  F : A -1-1-onto-> B
) )
24 f1of1 5374 . 2  |-  ( F : A -1-1-onto-> B  ->  F : A -1-1-> B )
2523, 24impbid1 141 1  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( F : A -1-1-> B  <-> 
F : A -1-1-onto-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481    C_ wss 3076   class class class wbr 3937   ran crn 4548   "cima 4550    Fn wfn 5126   -1-1->wf1 5128   -1-1-onto->wf1o 5130    ~~ cen 6640   Fincfn 6642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1o 6321  df-er 6437  df-en 6643  df-fin 6645
This theorem is referenced by:  iseqf1olemqf1o  10297  crth  11936  pwf1oexmid  13367
  Copyright terms: Public domain W3C validator