ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1finf1o Unicode version

Theorem f1finf1o 6912
Description: Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.)
Assertion
Ref Expression
f1finf1o  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( F : A -1-1-> B  <-> 
F : A -1-1-onto-> B ) )

Proof of Theorem f1finf1o
StepHypRef Expression
1 simpr 109 . . . 4  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  F : A -1-1-> B )
2 simplr 520 . . . . 5  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  B  e.  Fin )
3 f1rn 5394 . . . . . 6  |-  ( F : A -1-1-> B  ->  ran  F  C_  B )
43adantl 275 . . . . 5  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  ran  F  C_  B )
5 f1fn 5395 . . . . . . . . 9  |-  ( F : A -1-1-> B  ->  F  Fn  A )
6 fnima 5306 . . . . . . . . 9  |-  ( F  Fn  A  ->  ( F " A )  =  ran  F )
75, 6syl 14 . . . . . . . 8  |-  ( F : A -1-1-> B  -> 
( F " A
)  =  ran  F
)
87adantl 275 . . . . . . 7  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  ( F " A )  =  ran  F )
9 ssid 3162 . . . . . . . . 9  |-  A  C_  A
109a1i 9 . . . . . . . 8  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  A  C_  A
)
11 simpll 519 . . . . . . . . 9  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  A  ~~  B )
12 enfii 6840 . . . . . . . . 9  |-  ( ( B  e.  Fin  /\  A  ~~  B )  ->  A  e.  Fin )
132, 11, 12syl2anc 409 . . . . . . . 8  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  A  e.  Fin )
14 f1imaeng 6758 . . . . . . . 8  |-  ( ( F : A -1-1-> B  /\  A  C_  A  /\  A  e.  Fin )  ->  ( F " A
)  ~~  A )
151, 10, 13, 14syl3anc 1228 . . . . . . 7  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  ( F " A )  ~~  A
)
168, 15eqbrtrrd 4006 . . . . . 6  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  ran  F  ~~  A )
17 entr 6750 . . . . . 6  |-  ( ( ran  F  ~~  A  /\  A  ~~  B )  ->  ran  F  ~~  B )
1816, 11, 17syl2anc 409 . . . . 5  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  ran  F  ~~  B )
19 fisseneq 6897 . . . . 5  |-  ( ( B  e.  Fin  /\  ran  F  C_  B  /\  ran  F  ~~  B )  ->  ran  F  =  B )
202, 4, 18, 19syl3anc 1228 . . . 4  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  ran  F  =  B )
21 dff1o5 5441 . . . 4  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  ran  F  =  B ) )
221, 20, 21sylanbrc 414 . . 3  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  F : A
-1-1-onto-> B )
2322ex 114 . 2  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( F : A -1-1-> B  ->  F : A -1-1-onto-> B
) )
24 f1of1 5431 . 2  |-  ( F : A -1-1-onto-> B  ->  F : A -1-1-> B )
2523, 24impbid1 141 1  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( F : A -1-1-> B  <-> 
F : A -1-1-onto-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136    C_ wss 3116   class class class wbr 3982   ran crn 4605   "cima 4607    Fn wfn 5183   -1-1->wf1 5185   -1-1-onto->wf1o 5187    ~~ cen 6704   Fincfn 6706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1o 6384  df-er 6501  df-en 6707  df-fin 6709
This theorem is referenced by:  iseqf1olemqf1o  10428  crth  12156  eulerthlemh  12163  pwf1oexmid  13879
  Copyright terms: Public domain W3C validator