ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  updjudhcoinrg Unicode version

Theorem updjudhcoinrg 7147
Description: The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the right injection equals the second function. (Contributed by AV, 27-Jun-2022.)
Hypotheses
Ref Expression
updjud.f  |-  ( ph  ->  F : A --> C )
updjud.g  |-  ( ph  ->  G : B --> C )
updjudhf.h  |-  H  =  ( x  e.  ( A B )  |->  if ( ( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) ) )
Assertion
Ref Expression
updjudhcoinrg  |-  ( ph  ->  ( H  o.  (inr  |`  B ) )  =  G )
Distinct variable groups:    x, A    x, B    x, C    ph, x    x, F    x, G
Allowed substitution hint:    H( x)

Proof of Theorem updjudhcoinrg
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 updjud.f . . . . 5  |-  ( ph  ->  F : A --> C )
2 updjud.g . . . . 5  |-  ( ph  ->  G : B --> C )
3 updjudhf.h . . . . 5  |-  H  =  ( x  e.  ( A B )  |->  if ( ( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) ) )
41, 2, 3updjudhf 7145 . . . 4  |-  ( ph  ->  H : ( A B ) --> C )
5 ffn 5407 . . . 4  |-  ( H : ( A B ) --> C  ->  H  Fn  ( A B ) )
64, 5syl 14 . . 3  |-  ( ph  ->  H  Fn  ( A B ) )
7 inrresf1 7128 . . . 4  |-  (inr  |`  B ) : B -1-1-> ( A B )
8 f1fn 5465 . . . 4  |-  ( (inr  |`  B ) : B -1-1-> ( A B )  ->  (inr  |`  B )  Fn  B
)
97, 8mp1i 10 . . 3  |-  ( ph  ->  (inr  |`  B )  Fn  B )
10 f1f 5463 . . . . 5  |-  ( (inr  |`  B ) : B -1-1-> ( A B )  ->  (inr  |`  B ) : B --> ( A B ) )
117, 10ax-mp 5 . . . 4  |-  (inr  |`  B ) : B --> ( A B )
12 frn 5416 . . . 4  |-  ( (inr  |`  B ) : B --> ( A B )  ->  ran  (inr  |`  B )  C_  ( A B ) )
1311, 12mp1i 10 . . 3  |-  ( ph  ->  ran  (inr  |`  B ) 
C_  ( A B ) )
14 fnco 5366 . . 3  |-  ( ( H  Fn  ( A B )  /\  (inr  |`  B )  Fn  B  /\  ran  (inr  |`  B ) 
C_  ( A B ) )  ->  ( H  o.  (inr  |`  B ) )  Fn  B )
156, 9, 13, 14syl3anc 1249 . 2  |-  ( ph  ->  ( H  o.  (inr  |`  B ) )  Fn  B )
16 ffn 5407 . . 3  |-  ( G : B --> C  ->  G  Fn  B )
172, 16syl 14 . 2  |-  ( ph  ->  G  Fn  B )
18 fvco2 5630 . . . 4  |-  ( ( (inr  |`  B )  Fn  B  /\  b  e.  B )  ->  (
( H  o.  (inr  |`  B ) ) `  b )  =  ( H `  ( (inr  |`  B ) `  b
) ) )
199, 18sylan 283 . . 3  |-  ( (
ph  /\  b  e.  B )  ->  (
( H  o.  (inr  |`  B ) ) `  b )  =  ( H `  ( (inr  |`  B ) `  b
) ) )
20 fvres 5582 . . . . . 6  |-  ( b  e.  B  ->  (
(inr  |`  B ) `  b )  =  (inr
`  b ) )
2120adantl 277 . . . . 5  |-  ( (
ph  /\  b  e.  B )  ->  (
(inr  |`  B ) `  b )  =  (inr
`  b ) )
2221fveq2d 5562 . . . 4  |-  ( (
ph  /\  b  e.  B )  ->  ( H `  ( (inr  |`  B ) `  b
) )  =  ( H `  (inr `  b ) ) )
233a1i 9 . . . . 5  |-  ( (
ph  /\  b  e.  B )  ->  H  =  ( x  e.  ( A B )  |->  if ( ( 1st `  x )  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) ) ) )
24 fveq2 5558 . . . . . . . . 9  |-  ( x  =  (inr `  b
)  ->  ( 1st `  x )  =  ( 1st `  (inr `  b ) ) )
2524eqeq1d 2205 . . . . . . . 8  |-  ( x  =  (inr `  b
)  ->  ( ( 1st `  x )  =  (/) 
<->  ( 1st `  (inr `  b ) )  =  (/) ) )
26 fveq2 5558 . . . . . . . . 9  |-  ( x  =  (inr `  b
)  ->  ( 2nd `  x )  =  ( 2nd `  (inr `  b ) ) )
2726fveq2d 5562 . . . . . . . 8  |-  ( x  =  (inr `  b
)  ->  ( F `  ( 2nd `  x
) )  =  ( F `  ( 2nd `  (inr `  b )
) ) )
2826fveq2d 5562 . . . . . . . 8  |-  ( x  =  (inr `  b
)  ->  ( G `  ( 2nd `  x
) )  =  ( G `  ( 2nd `  (inr `  b )
) ) )
2925, 27, 28ifbieq12d 3587 . . . . . . 7  |-  ( x  =  (inr `  b
)  ->  if (
( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) )  =  if ( ( 1st `  (inr `  b ) )  =  (/) ,  ( F `  ( 2nd `  (inr `  b ) ) ) ,  ( G `  ( 2nd `  (inr `  b ) ) ) ) )
3029adantl 277 . . . . . 6  |-  ( ( ( ph  /\  b  e.  B )  /\  x  =  (inr `  b )
)  ->  if (
( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) )  =  if ( ( 1st `  (inr `  b ) )  =  (/) ,  ( F `  ( 2nd `  (inr `  b ) ) ) ,  ( G `  ( 2nd `  (inr `  b ) ) ) ) )
31 1stinr 7142 . . . . . . . . . 10  |-  ( b  e.  B  ->  ( 1st `  (inr `  b
) )  =  1o )
32 1n0 6490 . . . . . . . . . . . 12  |-  1o  =/=  (/)
3332neii 2369 . . . . . . . . . . 11  |-  -.  1o  =  (/)
34 eqeq1 2203 . . . . . . . . . . 11  |-  ( ( 1st `  (inr `  b ) )  =  1o  ->  ( ( 1st `  (inr `  b
) )  =  (/)  <->  1o  =  (/) ) )
3533, 34mtbiri 676 . . . . . . . . . 10  |-  ( ( 1st `  (inr `  b ) )  =  1o  ->  -.  ( 1st `  (inr `  b
) )  =  (/) )
3631, 35syl 14 . . . . . . . . 9  |-  ( b  e.  B  ->  -.  ( 1st `  (inr `  b ) )  =  (/) )
3736adantl 277 . . . . . . . 8  |-  ( (
ph  /\  b  e.  B )  ->  -.  ( 1st `  (inr `  b ) )  =  (/) )
3837adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  b  e.  B )  /\  x  =  (inr `  b )
)  ->  -.  ( 1st `  (inr `  b
) )  =  (/) )
3938iffalsed 3571 . . . . . 6  |-  ( ( ( ph  /\  b  e.  B )  /\  x  =  (inr `  b )
)  ->  if (
( 1st `  (inr `  b ) )  =  (/) ,  ( F `  ( 2nd `  (inr `  b ) ) ) ,  ( G `  ( 2nd `  (inr `  b ) ) ) )  =  ( G `
 ( 2nd `  (inr `  b ) ) ) )
4030, 39eqtrd 2229 . . . . 5  |-  ( ( ( ph  /\  b  e.  B )  /\  x  =  (inr `  b )
)  ->  if (
( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) )  =  ( G `
 ( 2nd `  (inr `  b ) ) ) )
41 djurcl 7118 . . . . . 6  |-  ( b  e.  B  ->  (inr `  b )  e.  ( A B ) )
4241adantl 277 . . . . 5  |-  ( (
ph  /\  b  e.  B )  ->  (inr `  b )  e.  ( A B ) )
432adantr 276 . . . . . 6  |-  ( (
ph  /\  b  e.  B )  ->  G : B --> C )
44 2ndinr 7143 . . . . . . . 8  |-  ( b  e.  B  ->  ( 2nd `  (inr `  b
) )  =  b )
4544adantl 277 . . . . . . 7  |-  ( (
ph  /\  b  e.  B )  ->  ( 2nd `  (inr `  b
) )  =  b )
46 simpr 110 . . . . . . 7  |-  ( (
ph  /\  b  e.  B )  ->  b  e.  B )
4745, 46eqeltrd 2273 . . . . . 6  |-  ( (
ph  /\  b  e.  B )  ->  ( 2nd `  (inr `  b
) )  e.  B
)
4843, 47ffvelcdmd 5698 . . . . 5  |-  ( (
ph  /\  b  e.  B )  ->  ( G `  ( 2nd `  (inr `  b )
) )  e.  C
)
4923, 40, 42, 48fvmptd 5642 . . . 4  |-  ( (
ph  /\  b  e.  B )  ->  ( H `  (inr `  b
) )  =  ( G `  ( 2nd `  (inr `  b )
) ) )
5022, 49eqtrd 2229 . . 3  |-  ( (
ph  /\  b  e.  B )  ->  ( H `  ( (inr  |`  B ) `  b
) )  =  ( G `  ( 2nd `  (inr `  b )
) ) )
5145fveq2d 5562 . . 3  |-  ( (
ph  /\  b  e.  B )  ->  ( G `  ( 2nd `  (inr `  b )
) )  =  ( G `  b ) )
5219, 50, 513eqtrd 2233 . 2  |-  ( (
ph  /\  b  e.  B )  ->  (
( H  o.  (inr  |`  B ) ) `  b )  =  ( G `  b ) )
5315, 17, 52eqfnfvd 5662 1  |-  ( ph  ->  ( H  o.  (inr  |`  B ) )  =  G )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    C_ wss 3157   (/)c0 3450   ifcif 3561    |-> cmpt 4094   ran crn 4664    |` cres 4665    o. ccom 4667    Fn wfn 5253   -->wf 5254   -1-1->wf1 5255   ` cfv 5258   1stc1st 6196   2ndc2nd 6197   1oc1o 6467   ⊔ cdju 7103  inrcinr 7112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199  df-1o 6474  df-dju 7104  df-inl 7113  df-inr 7114
This theorem is referenced by:  updjud  7148
  Copyright terms: Public domain W3C validator