Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > updjudhcoinrg | Unicode version |
Description: The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the right injection equals the second function. (Contributed by AV, 27-Jun-2022.) |
Ref | Expression |
---|---|
updjud.f | |
updjud.g | |
updjudhf.h | ⊔ |
Ref | Expression |
---|---|
updjudhcoinrg | inr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | updjud.f | . . . . 5 | |
2 | updjud.g | . . . . 5 | |
3 | updjudhf.h | . . . . 5 ⊔ | |
4 | 1, 2, 3 | updjudhf 7044 | . . . 4 ⊔ |
5 | ffn 5337 | . . . 4 ⊔ ⊔ | |
6 | 4, 5 | syl 14 | . . 3 ⊔ |
7 | inrresf1 7027 | . . . 4 inr ⊔ | |
8 | f1fn 5395 | . . . 4 inr ⊔ inr | |
9 | 7, 8 | mp1i 10 | . . 3 inr |
10 | f1f 5393 | . . . . 5 inr ⊔ inr ⊔ | |
11 | 7, 10 | ax-mp 5 | . . . 4 inr ⊔ |
12 | frn 5346 | . . . 4 inr ⊔ inr ⊔ | |
13 | 11, 12 | mp1i 10 | . . 3 inr ⊔ |
14 | fnco 5296 | . . 3 ⊔ inr inr ⊔ inr | |
15 | 6, 9, 13, 14 | syl3anc 1228 | . 2 inr |
16 | ffn 5337 | . . 3 | |
17 | 2, 16 | syl 14 | . 2 |
18 | fvco2 5555 | . . . 4 inr inr inr | |
19 | 9, 18 | sylan 281 | . . 3 inr inr |
20 | fvres 5510 | . . . . . 6 inr inr | |
21 | 20 | adantl 275 | . . . . 5 inr inr |
22 | 21 | fveq2d 5490 | . . . 4 inr inr |
23 | 3 | a1i 9 | . . . . 5 ⊔ |
24 | fveq2 5486 | . . . . . . . . 9 inr inr | |
25 | 24 | eqeq1d 2174 | . . . . . . . 8 inr inr |
26 | fveq2 5486 | . . . . . . . . 9 inr inr | |
27 | 26 | fveq2d 5490 | . . . . . . . 8 inr inr |
28 | 26 | fveq2d 5490 | . . . . . . . 8 inr inr |
29 | 25, 27, 28 | ifbieq12d 3546 | . . . . . . 7 inr inr inr inr |
30 | 29 | adantl 275 | . . . . . 6 inr inr inr inr |
31 | 1stinr 7041 | . . . . . . . . . 10 inr | |
32 | 1n0 6400 | . . . . . . . . . . . 12 | |
33 | 32 | neii 2338 | . . . . . . . . . . 11 |
34 | eqeq1 2172 | . . . . . . . . . . 11 inr inr | |
35 | 33, 34 | mtbiri 665 | . . . . . . . . . 10 inr inr |
36 | 31, 35 | syl 14 | . . . . . . . . 9 inr |
37 | 36 | adantl 275 | . . . . . . . 8 inr |
38 | 37 | adantr 274 | . . . . . . 7 inr inr |
39 | 38 | iffalsed 3530 | . . . . . 6 inr inr inr inr inr |
40 | 30, 39 | eqtrd 2198 | . . . . 5 inr inr |
41 | djurcl 7017 | . . . . . 6 inr ⊔ | |
42 | 41 | adantl 275 | . . . . 5 inr ⊔ |
43 | 2 | adantr 274 | . . . . . 6 |
44 | 2ndinr 7042 | . . . . . . . 8 inr | |
45 | 44 | adantl 275 | . . . . . . 7 inr |
46 | simpr 109 | . . . . . . 7 | |
47 | 45, 46 | eqeltrd 2243 | . . . . . 6 inr |
48 | 43, 47 | ffvelrnd 5621 | . . . . 5 inr |
49 | 23, 40, 42, 48 | fvmptd 5567 | . . . 4 inr inr |
50 | 22, 49 | eqtrd 2198 | . . 3 inr inr |
51 | 45 | fveq2d 5490 | . . 3 inr |
52 | 19, 50, 51 | 3eqtrd 2202 | . 2 inr |
53 | 15, 17, 52 | eqfnfvd 5586 | 1 inr |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1343 wcel 2136 wss 3116 c0 3409 cif 3520 cmpt 4043 crn 4605 cres 4606 ccom 4608 wfn 5183 wf 5184 wf1 5185 cfv 5188 c1st 6106 c2nd 6107 c1o 6377 ⊔ cdju 7002 inrcinr 7011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-dju 7003 df-inl 7012 df-inr 7013 |
This theorem is referenced by: updjud 7047 |
Copyright terms: Public domain | W3C validator |