ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  updjudhcoinrg Unicode version

Theorem updjudhcoinrg 7140
Description: The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the right injection equals the second function. (Contributed by AV, 27-Jun-2022.)
Hypotheses
Ref Expression
updjud.f  |-  ( ph  ->  F : A --> C )
updjud.g  |-  ( ph  ->  G : B --> C )
updjudhf.h  |-  H  =  ( x  e.  ( A B )  |->  if ( ( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) ) )
Assertion
Ref Expression
updjudhcoinrg  |-  ( ph  ->  ( H  o.  (inr  |`  B ) )  =  G )
Distinct variable groups:    x, A    x, B    x, C    ph, x    x, F    x, G
Allowed substitution hint:    H( x)

Proof of Theorem updjudhcoinrg
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 updjud.f . . . . 5  |-  ( ph  ->  F : A --> C )
2 updjud.g . . . . 5  |-  ( ph  ->  G : B --> C )
3 updjudhf.h . . . . 5  |-  H  =  ( x  e.  ( A B )  |->  if ( ( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) ) )
41, 2, 3updjudhf 7138 . . . 4  |-  ( ph  ->  H : ( A B ) --> C )
5 ffn 5403 . . . 4  |-  ( H : ( A B ) --> C  ->  H  Fn  ( A B ) )
64, 5syl 14 . . 3  |-  ( ph  ->  H  Fn  ( A B ) )
7 inrresf1 7121 . . . 4  |-  (inr  |`  B ) : B -1-1-> ( A B )
8 f1fn 5461 . . . 4  |-  ( (inr  |`  B ) : B -1-1-> ( A B )  ->  (inr  |`  B )  Fn  B
)
97, 8mp1i 10 . . 3  |-  ( ph  ->  (inr  |`  B )  Fn  B )
10 f1f 5459 . . . . 5  |-  ( (inr  |`  B ) : B -1-1-> ( A B )  ->  (inr  |`  B ) : B --> ( A B ) )
117, 10ax-mp 5 . . . 4  |-  (inr  |`  B ) : B --> ( A B )
12 frn 5412 . . . 4  |-  ( (inr  |`  B ) : B --> ( A B )  ->  ran  (inr  |`  B )  C_  ( A B ) )
1311, 12mp1i 10 . . 3  |-  ( ph  ->  ran  (inr  |`  B ) 
C_  ( A B ) )
14 fnco 5362 . . 3  |-  ( ( H  Fn  ( A B )  /\  (inr  |`  B )  Fn  B  /\  ran  (inr  |`  B ) 
C_  ( A B ) )  ->  ( H  o.  (inr  |`  B ) )  Fn  B )
156, 9, 13, 14syl3anc 1249 . 2  |-  ( ph  ->  ( H  o.  (inr  |`  B ) )  Fn  B )
16 ffn 5403 . . 3  |-  ( G : B --> C  ->  G  Fn  B )
172, 16syl 14 . 2  |-  ( ph  ->  G  Fn  B )
18 fvco2 5626 . . . 4  |-  ( ( (inr  |`  B )  Fn  B  /\  b  e.  B )  ->  (
( H  o.  (inr  |`  B ) ) `  b )  =  ( H `  ( (inr  |`  B ) `  b
) ) )
199, 18sylan 283 . . 3  |-  ( (
ph  /\  b  e.  B )  ->  (
( H  o.  (inr  |`  B ) ) `  b )  =  ( H `  ( (inr  |`  B ) `  b
) ) )
20 fvres 5578 . . . . . 6  |-  ( b  e.  B  ->  (
(inr  |`  B ) `  b )  =  (inr
`  b ) )
2120adantl 277 . . . . 5  |-  ( (
ph  /\  b  e.  B )  ->  (
(inr  |`  B ) `  b )  =  (inr
`  b ) )
2221fveq2d 5558 . . . 4  |-  ( (
ph  /\  b  e.  B )  ->  ( H `  ( (inr  |`  B ) `  b
) )  =  ( H `  (inr `  b ) ) )
233a1i 9 . . . . 5  |-  ( (
ph  /\  b  e.  B )  ->  H  =  ( x  e.  ( A B )  |->  if ( ( 1st `  x )  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) ) ) )
24 fveq2 5554 . . . . . . . . 9  |-  ( x  =  (inr `  b
)  ->  ( 1st `  x )  =  ( 1st `  (inr `  b ) ) )
2524eqeq1d 2202 . . . . . . . 8  |-  ( x  =  (inr `  b
)  ->  ( ( 1st `  x )  =  (/) 
<->  ( 1st `  (inr `  b ) )  =  (/) ) )
26 fveq2 5554 . . . . . . . . 9  |-  ( x  =  (inr `  b
)  ->  ( 2nd `  x )  =  ( 2nd `  (inr `  b ) ) )
2726fveq2d 5558 . . . . . . . 8  |-  ( x  =  (inr `  b
)  ->  ( F `  ( 2nd `  x
) )  =  ( F `  ( 2nd `  (inr `  b )
) ) )
2826fveq2d 5558 . . . . . . . 8  |-  ( x  =  (inr `  b
)  ->  ( G `  ( 2nd `  x
) )  =  ( G `  ( 2nd `  (inr `  b )
) ) )
2925, 27, 28ifbieq12d 3583 . . . . . . 7  |-  ( x  =  (inr `  b
)  ->  if (
( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) )  =  if ( ( 1st `  (inr `  b ) )  =  (/) ,  ( F `  ( 2nd `  (inr `  b ) ) ) ,  ( G `  ( 2nd `  (inr `  b ) ) ) ) )
3029adantl 277 . . . . . 6  |-  ( ( ( ph  /\  b  e.  B )  /\  x  =  (inr `  b )
)  ->  if (
( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) )  =  if ( ( 1st `  (inr `  b ) )  =  (/) ,  ( F `  ( 2nd `  (inr `  b ) ) ) ,  ( G `  ( 2nd `  (inr `  b ) ) ) ) )
31 1stinr 7135 . . . . . . . . . 10  |-  ( b  e.  B  ->  ( 1st `  (inr `  b
) )  =  1o )
32 1n0 6485 . . . . . . . . . . . 12  |-  1o  =/=  (/)
3332neii 2366 . . . . . . . . . . 11  |-  -.  1o  =  (/)
34 eqeq1 2200 . . . . . . . . . . 11  |-  ( ( 1st `  (inr `  b ) )  =  1o  ->  ( ( 1st `  (inr `  b
) )  =  (/)  <->  1o  =  (/) ) )
3533, 34mtbiri 676 . . . . . . . . . 10  |-  ( ( 1st `  (inr `  b ) )  =  1o  ->  -.  ( 1st `  (inr `  b
) )  =  (/) )
3631, 35syl 14 . . . . . . . . 9  |-  ( b  e.  B  ->  -.  ( 1st `  (inr `  b ) )  =  (/) )
3736adantl 277 . . . . . . . 8  |-  ( (
ph  /\  b  e.  B )  ->  -.  ( 1st `  (inr `  b ) )  =  (/) )
3837adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  b  e.  B )  /\  x  =  (inr `  b )
)  ->  -.  ( 1st `  (inr `  b
) )  =  (/) )
3938iffalsed 3567 . . . . . 6  |-  ( ( ( ph  /\  b  e.  B )  /\  x  =  (inr `  b )
)  ->  if (
( 1st `  (inr `  b ) )  =  (/) ,  ( F `  ( 2nd `  (inr `  b ) ) ) ,  ( G `  ( 2nd `  (inr `  b ) ) ) )  =  ( G `
 ( 2nd `  (inr `  b ) ) ) )
4030, 39eqtrd 2226 . . . . 5  |-  ( ( ( ph  /\  b  e.  B )  /\  x  =  (inr `  b )
)  ->  if (
( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) )  =  ( G `
 ( 2nd `  (inr `  b ) ) ) )
41 djurcl 7111 . . . . . 6  |-  ( b  e.  B  ->  (inr `  b )  e.  ( A B ) )
4241adantl 277 . . . . 5  |-  ( (
ph  /\  b  e.  B )  ->  (inr `  b )  e.  ( A B ) )
432adantr 276 . . . . . 6  |-  ( (
ph  /\  b  e.  B )  ->  G : B --> C )
44 2ndinr 7136 . . . . . . . 8  |-  ( b  e.  B  ->  ( 2nd `  (inr `  b
) )  =  b )
4544adantl 277 . . . . . . 7  |-  ( (
ph  /\  b  e.  B )  ->  ( 2nd `  (inr `  b
) )  =  b )
46 simpr 110 . . . . . . 7  |-  ( (
ph  /\  b  e.  B )  ->  b  e.  B )
4745, 46eqeltrd 2270 . . . . . 6  |-  ( (
ph  /\  b  e.  B )  ->  ( 2nd `  (inr `  b
) )  e.  B
)
4843, 47ffvelcdmd 5694 . . . . 5  |-  ( (
ph  /\  b  e.  B )  ->  ( G `  ( 2nd `  (inr `  b )
) )  e.  C
)
4923, 40, 42, 48fvmptd 5638 . . . 4  |-  ( (
ph  /\  b  e.  B )  ->  ( H `  (inr `  b
) )  =  ( G `  ( 2nd `  (inr `  b )
) ) )
5022, 49eqtrd 2226 . . 3  |-  ( (
ph  /\  b  e.  B )  ->  ( H `  ( (inr  |`  B ) `  b
) )  =  ( G `  ( 2nd `  (inr `  b )
) ) )
5145fveq2d 5558 . . 3  |-  ( (
ph  /\  b  e.  B )  ->  ( G `  ( 2nd `  (inr `  b )
) )  =  ( G `  b ) )
5219, 50, 513eqtrd 2230 . 2  |-  ( (
ph  /\  b  e.  B )  ->  (
( H  o.  (inr  |`  B ) ) `  b )  =  ( G `  b ) )
5315, 17, 52eqfnfvd 5658 1  |-  ( ph  ->  ( H  o.  (inr  |`  B ) )  =  G )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    C_ wss 3153   (/)c0 3446   ifcif 3557    |-> cmpt 4090   ran crn 4660    |` cres 4661    o. ccom 4663    Fn wfn 5249   -->wf 5250   -1-1->wf1 5251   ` cfv 5254   1stc1st 6191   2ndc2nd 6192   1oc1o 6462   ⊔ cdju 7096  inrcinr 7105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194  df-1o 6469  df-dju 7097  df-inl 7106  df-inr 7107
This theorem is referenced by:  updjud  7141
  Copyright terms: Public domain W3C validator