Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > updjudhcoinrg | Unicode version |
Description: The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the right injection equals the second function. (Contributed by AV, 27-Jun-2022.) |
Ref | Expression |
---|---|
updjud.f | |
updjud.g | |
updjudhf.h | ⊔ |
Ref | Expression |
---|---|
updjudhcoinrg | inr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | updjud.f | . . . . 5 | |
2 | updjud.g | . . . . 5 | |
3 | updjudhf.h | . . . . 5 ⊔ | |
4 | 1, 2, 3 | updjudhf 7056 | . . . 4 ⊔ |
5 | ffn 5347 | . . . 4 ⊔ ⊔ | |
6 | 4, 5 | syl 14 | . . 3 ⊔ |
7 | inrresf1 7039 | . . . 4 inr ⊔ | |
8 | f1fn 5405 | . . . 4 inr ⊔ inr | |
9 | 7, 8 | mp1i 10 | . . 3 inr |
10 | f1f 5403 | . . . . 5 inr ⊔ inr ⊔ | |
11 | 7, 10 | ax-mp 5 | . . . 4 inr ⊔ |
12 | frn 5356 | . . . 4 inr ⊔ inr ⊔ | |
13 | 11, 12 | mp1i 10 | . . 3 inr ⊔ |
14 | fnco 5306 | . . 3 ⊔ inr inr ⊔ inr | |
15 | 6, 9, 13, 14 | syl3anc 1233 | . 2 inr |
16 | ffn 5347 | . . 3 | |
17 | 2, 16 | syl 14 | . 2 |
18 | fvco2 5565 | . . . 4 inr inr inr | |
19 | 9, 18 | sylan 281 | . . 3 inr inr |
20 | fvres 5520 | . . . . . 6 inr inr | |
21 | 20 | adantl 275 | . . . . 5 inr inr |
22 | 21 | fveq2d 5500 | . . . 4 inr inr |
23 | 3 | a1i 9 | . . . . 5 ⊔ |
24 | fveq2 5496 | . . . . . . . . 9 inr inr | |
25 | 24 | eqeq1d 2179 | . . . . . . . 8 inr inr |
26 | fveq2 5496 | . . . . . . . . 9 inr inr | |
27 | 26 | fveq2d 5500 | . . . . . . . 8 inr inr |
28 | 26 | fveq2d 5500 | . . . . . . . 8 inr inr |
29 | 25, 27, 28 | ifbieq12d 3552 | . . . . . . 7 inr inr inr inr |
30 | 29 | adantl 275 | . . . . . 6 inr inr inr inr |
31 | 1stinr 7053 | . . . . . . . . . 10 inr | |
32 | 1n0 6411 | . . . . . . . . . . . 12 | |
33 | 32 | neii 2342 | . . . . . . . . . . 11 |
34 | eqeq1 2177 | . . . . . . . . . . 11 inr inr | |
35 | 33, 34 | mtbiri 670 | . . . . . . . . . 10 inr inr |
36 | 31, 35 | syl 14 | . . . . . . . . 9 inr |
37 | 36 | adantl 275 | . . . . . . . 8 inr |
38 | 37 | adantr 274 | . . . . . . 7 inr inr |
39 | 38 | iffalsed 3536 | . . . . . 6 inr inr inr inr inr |
40 | 30, 39 | eqtrd 2203 | . . . . 5 inr inr |
41 | djurcl 7029 | . . . . . 6 inr ⊔ | |
42 | 41 | adantl 275 | . . . . 5 inr ⊔ |
43 | 2 | adantr 274 | . . . . . 6 |
44 | 2ndinr 7054 | . . . . . . . 8 inr | |
45 | 44 | adantl 275 | . . . . . . 7 inr |
46 | simpr 109 | . . . . . . 7 | |
47 | 45, 46 | eqeltrd 2247 | . . . . . 6 inr |
48 | 43, 47 | ffvelrnd 5632 | . . . . 5 inr |
49 | 23, 40, 42, 48 | fvmptd 5577 | . . . 4 inr inr |
50 | 22, 49 | eqtrd 2203 | . . 3 inr inr |
51 | 45 | fveq2d 5500 | . . 3 inr |
52 | 19, 50, 51 | 3eqtrd 2207 | . 2 inr |
53 | 15, 17, 52 | eqfnfvd 5596 | 1 inr |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1348 wcel 2141 wss 3121 c0 3414 cif 3526 cmpt 4050 crn 4612 cres 4613 ccom 4615 wfn 5193 wf 5194 wf1 5195 cfv 5198 c1st 6117 c2nd 6118 c1o 6388 ⊔ cdju 7014 inrcinr 7023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-1o 6395 df-dju 7015 df-inl 7024 df-inr 7025 |
This theorem is referenced by: updjud 7059 |
Copyright terms: Public domain | W3C validator |