ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  updjudhcoinrg Unicode version

Theorem updjudhcoinrg 7248
Description: The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the right injection equals the second function. (Contributed by AV, 27-Jun-2022.)
Hypotheses
Ref Expression
updjud.f  |-  ( ph  ->  F : A --> C )
updjud.g  |-  ( ph  ->  G : B --> C )
updjudhf.h  |-  H  =  ( x  e.  ( A B )  |->  if ( ( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) ) )
Assertion
Ref Expression
updjudhcoinrg  |-  ( ph  ->  ( H  o.  (inr  |`  B ) )  =  G )
Distinct variable groups:    x, A    x, B    x, C    ph, x    x, F    x, G
Allowed substitution hint:    H( x)

Proof of Theorem updjudhcoinrg
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 updjud.f . . . . 5  |-  ( ph  ->  F : A --> C )
2 updjud.g . . . . 5  |-  ( ph  ->  G : B --> C )
3 updjudhf.h . . . . 5  |-  H  =  ( x  e.  ( A B )  |->  if ( ( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) ) )
41, 2, 3updjudhf 7246 . . . 4  |-  ( ph  ->  H : ( A B ) --> C )
5 ffn 5473 . . . 4  |-  ( H : ( A B ) --> C  ->  H  Fn  ( A B ) )
64, 5syl 14 . . 3  |-  ( ph  ->  H  Fn  ( A B ) )
7 inrresf1 7229 . . . 4  |-  (inr  |`  B ) : B -1-1-> ( A B )
8 f1fn 5533 . . . 4  |-  ( (inr  |`  B ) : B -1-1-> ( A B )  ->  (inr  |`  B )  Fn  B
)
97, 8mp1i 10 . . 3  |-  ( ph  ->  (inr  |`  B )  Fn  B )
10 f1f 5531 . . . . 5  |-  ( (inr  |`  B ) : B -1-1-> ( A B )  ->  (inr  |`  B ) : B --> ( A B ) )
117, 10ax-mp 5 . . . 4  |-  (inr  |`  B ) : B --> ( A B )
12 frn 5482 . . . 4  |-  ( (inr  |`  B ) : B --> ( A B )  ->  ran  (inr  |`  B )  C_  ( A B ) )
1311, 12mp1i 10 . . 3  |-  ( ph  ->  ran  (inr  |`  B ) 
C_  ( A B ) )
14 fnco 5431 . . 3  |-  ( ( H  Fn  ( A B )  /\  (inr  |`  B )  Fn  B  /\  ran  (inr  |`  B ) 
C_  ( A B ) )  ->  ( H  o.  (inr  |`  B ) )  Fn  B )
156, 9, 13, 14syl3anc 1271 . 2  |-  ( ph  ->  ( H  o.  (inr  |`  B ) )  Fn  B )
16 ffn 5473 . . 3  |-  ( G : B --> C  ->  G  Fn  B )
172, 16syl 14 . 2  |-  ( ph  ->  G  Fn  B )
18 fvco2 5703 . . . 4  |-  ( ( (inr  |`  B )  Fn  B  /\  b  e.  B )  ->  (
( H  o.  (inr  |`  B ) ) `  b )  =  ( H `  ( (inr  |`  B ) `  b
) ) )
199, 18sylan 283 . . 3  |-  ( (
ph  /\  b  e.  B )  ->  (
( H  o.  (inr  |`  B ) ) `  b )  =  ( H `  ( (inr  |`  B ) `  b
) ) )
20 fvres 5651 . . . . . 6  |-  ( b  e.  B  ->  (
(inr  |`  B ) `  b )  =  (inr
`  b ) )
2120adantl 277 . . . . 5  |-  ( (
ph  /\  b  e.  B )  ->  (
(inr  |`  B ) `  b )  =  (inr
`  b ) )
2221fveq2d 5631 . . . 4  |-  ( (
ph  /\  b  e.  B )  ->  ( H `  ( (inr  |`  B ) `  b
) )  =  ( H `  (inr `  b ) ) )
233a1i 9 . . . . 5  |-  ( (
ph  /\  b  e.  B )  ->  H  =  ( x  e.  ( A B )  |->  if ( ( 1st `  x )  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) ) ) )
24 fveq2 5627 . . . . . . . . 9  |-  ( x  =  (inr `  b
)  ->  ( 1st `  x )  =  ( 1st `  (inr `  b ) ) )
2524eqeq1d 2238 . . . . . . . 8  |-  ( x  =  (inr `  b
)  ->  ( ( 1st `  x )  =  (/) 
<->  ( 1st `  (inr `  b ) )  =  (/) ) )
26 fveq2 5627 . . . . . . . . 9  |-  ( x  =  (inr `  b
)  ->  ( 2nd `  x )  =  ( 2nd `  (inr `  b ) ) )
2726fveq2d 5631 . . . . . . . 8  |-  ( x  =  (inr `  b
)  ->  ( F `  ( 2nd `  x
) )  =  ( F `  ( 2nd `  (inr `  b )
) ) )
2826fveq2d 5631 . . . . . . . 8  |-  ( x  =  (inr `  b
)  ->  ( G `  ( 2nd `  x
) )  =  ( G `  ( 2nd `  (inr `  b )
) ) )
2925, 27, 28ifbieq12d 3629 . . . . . . 7  |-  ( x  =  (inr `  b
)  ->  if (
( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) )  =  if ( ( 1st `  (inr `  b ) )  =  (/) ,  ( F `  ( 2nd `  (inr `  b ) ) ) ,  ( G `  ( 2nd `  (inr `  b ) ) ) ) )
3029adantl 277 . . . . . 6  |-  ( ( ( ph  /\  b  e.  B )  /\  x  =  (inr `  b )
)  ->  if (
( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) )  =  if ( ( 1st `  (inr `  b ) )  =  (/) ,  ( F `  ( 2nd `  (inr `  b ) ) ) ,  ( G `  ( 2nd `  (inr `  b ) ) ) ) )
31 1stinr 7243 . . . . . . . . . 10  |-  ( b  e.  B  ->  ( 1st `  (inr `  b
) )  =  1o )
32 1n0 6578 . . . . . . . . . . . 12  |-  1o  =/=  (/)
3332neii 2402 . . . . . . . . . . 11  |-  -.  1o  =  (/)
34 eqeq1 2236 . . . . . . . . . . 11  |-  ( ( 1st `  (inr `  b ) )  =  1o  ->  ( ( 1st `  (inr `  b
) )  =  (/)  <->  1o  =  (/) ) )
3533, 34mtbiri 679 . . . . . . . . . 10  |-  ( ( 1st `  (inr `  b ) )  =  1o  ->  -.  ( 1st `  (inr `  b
) )  =  (/) )
3631, 35syl 14 . . . . . . . . 9  |-  ( b  e.  B  ->  -.  ( 1st `  (inr `  b ) )  =  (/) )
3736adantl 277 . . . . . . . 8  |-  ( (
ph  /\  b  e.  B )  ->  -.  ( 1st `  (inr `  b ) )  =  (/) )
3837adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  b  e.  B )  /\  x  =  (inr `  b )
)  ->  -.  ( 1st `  (inr `  b
) )  =  (/) )
3938iffalsed 3612 . . . . . 6  |-  ( ( ( ph  /\  b  e.  B )  /\  x  =  (inr `  b )
)  ->  if (
( 1st `  (inr `  b ) )  =  (/) ,  ( F `  ( 2nd `  (inr `  b ) ) ) ,  ( G `  ( 2nd `  (inr `  b ) ) ) )  =  ( G `
 ( 2nd `  (inr `  b ) ) ) )
4030, 39eqtrd 2262 . . . . 5  |-  ( ( ( ph  /\  b  e.  B )  /\  x  =  (inr `  b )
)  ->  if (
( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) )  =  ( G `
 ( 2nd `  (inr `  b ) ) ) )
41 djurcl 7219 . . . . . 6  |-  ( b  e.  B  ->  (inr `  b )  e.  ( A B ) )
4241adantl 277 . . . . 5  |-  ( (
ph  /\  b  e.  B )  ->  (inr `  b )  e.  ( A B ) )
432adantr 276 . . . . . 6  |-  ( (
ph  /\  b  e.  B )  ->  G : B --> C )
44 2ndinr 7244 . . . . . . . 8  |-  ( b  e.  B  ->  ( 2nd `  (inr `  b
) )  =  b )
4544adantl 277 . . . . . . 7  |-  ( (
ph  /\  b  e.  B )  ->  ( 2nd `  (inr `  b
) )  =  b )
46 simpr 110 . . . . . . 7  |-  ( (
ph  /\  b  e.  B )  ->  b  e.  B )
4745, 46eqeltrd 2306 . . . . . 6  |-  ( (
ph  /\  b  e.  B )  ->  ( 2nd `  (inr `  b
) )  e.  B
)
4843, 47ffvelcdmd 5771 . . . . 5  |-  ( (
ph  /\  b  e.  B )  ->  ( G `  ( 2nd `  (inr `  b )
) )  e.  C
)
4923, 40, 42, 48fvmptd 5715 . . . 4  |-  ( (
ph  /\  b  e.  B )  ->  ( H `  (inr `  b
) )  =  ( G `  ( 2nd `  (inr `  b )
) ) )
5022, 49eqtrd 2262 . . 3  |-  ( (
ph  /\  b  e.  B )  ->  ( H `  ( (inr  |`  B ) `  b
) )  =  ( G `  ( 2nd `  (inr `  b )
) ) )
5145fveq2d 5631 . . 3  |-  ( (
ph  /\  b  e.  B )  ->  ( G `  ( 2nd `  (inr `  b )
) )  =  ( G `  b ) )
5219, 50, 513eqtrd 2266 . 2  |-  ( (
ph  /\  b  e.  B )  ->  (
( H  o.  (inr  |`  B ) ) `  b )  =  ( G `  b ) )
5315, 17, 52eqfnfvd 5735 1  |-  ( ph  ->  ( H  o.  (inr  |`  B ) )  =  G )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    C_ wss 3197   (/)c0 3491   ifcif 3602    |-> cmpt 4145   ran crn 4720    |` cres 4721    o. ccom 4723    Fn wfn 5313   -->wf 5314   -1-1->wf1 5315   ` cfv 5318   1stc1st 6284   2ndc2nd 6285   1oc1o 6555   ⊔ cdju 7204  inrcinr 7213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1st 6286  df-2nd 6287  df-1o 6562  df-dju 7205  df-inl 7214  df-inr 7215
This theorem is referenced by:  updjud  7249
  Copyright terms: Public domain W3C validator