Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > updjudhcoinrg | Unicode version |
Description: The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the right injection equals the second function. (Contributed by AV, 27-Jun-2022.) |
Ref | Expression |
---|---|
updjud.f | |
updjud.g | |
updjudhf.h | ⊔ |
Ref | Expression |
---|---|
updjudhcoinrg | inr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | updjud.f | . . . . 5 | |
2 | updjud.g | . . . . 5 | |
3 | updjudhf.h | . . . . 5 ⊔ | |
4 | 1, 2, 3 | updjudhf 7013 | . . . 4 ⊔ |
5 | ffn 5316 | . . . 4 ⊔ ⊔ | |
6 | 4, 5 | syl 14 | . . 3 ⊔ |
7 | inrresf1 6996 | . . . 4 inr ⊔ | |
8 | f1fn 5374 | . . . 4 inr ⊔ inr | |
9 | 7, 8 | mp1i 10 | . . 3 inr |
10 | f1f 5372 | . . . . 5 inr ⊔ inr ⊔ | |
11 | 7, 10 | ax-mp 5 | . . . 4 inr ⊔ |
12 | frn 5325 | . . . 4 inr ⊔ inr ⊔ | |
13 | 11, 12 | mp1i 10 | . . 3 inr ⊔ |
14 | fnco 5275 | . . 3 ⊔ inr inr ⊔ inr | |
15 | 6, 9, 13, 14 | syl3anc 1220 | . 2 inr |
16 | ffn 5316 | . . 3 | |
17 | 2, 16 | syl 14 | . 2 |
18 | fvco2 5534 | . . . 4 inr inr inr | |
19 | 9, 18 | sylan 281 | . . 3 inr inr |
20 | fvres 5489 | . . . . . 6 inr inr | |
21 | 20 | adantl 275 | . . . . 5 inr inr |
22 | 21 | fveq2d 5469 | . . . 4 inr inr |
23 | 3 | a1i 9 | . . . . 5 ⊔ |
24 | fveq2 5465 | . . . . . . . . 9 inr inr | |
25 | 24 | eqeq1d 2166 | . . . . . . . 8 inr inr |
26 | fveq2 5465 | . . . . . . . . 9 inr inr | |
27 | 26 | fveq2d 5469 | . . . . . . . 8 inr inr |
28 | 26 | fveq2d 5469 | . . . . . . . 8 inr inr |
29 | 25, 27, 28 | ifbieq12d 3531 | . . . . . . 7 inr inr inr inr |
30 | 29 | adantl 275 | . . . . . 6 inr inr inr inr |
31 | 1stinr 7010 | . . . . . . . . . 10 inr | |
32 | 1n0 6373 | . . . . . . . . . . . 12 | |
33 | 32 | neii 2329 | . . . . . . . . . . 11 |
34 | eqeq1 2164 | . . . . . . . . . . 11 inr inr | |
35 | 33, 34 | mtbiri 665 | . . . . . . . . . 10 inr inr |
36 | 31, 35 | syl 14 | . . . . . . . . 9 inr |
37 | 36 | adantl 275 | . . . . . . . 8 inr |
38 | 37 | adantr 274 | . . . . . . 7 inr inr |
39 | 38 | iffalsed 3515 | . . . . . 6 inr inr inr inr inr |
40 | 30, 39 | eqtrd 2190 | . . . . 5 inr inr |
41 | djurcl 6986 | . . . . . 6 inr ⊔ | |
42 | 41 | adantl 275 | . . . . 5 inr ⊔ |
43 | 2 | adantr 274 | . . . . . 6 |
44 | 2ndinr 7011 | . . . . . . . 8 inr | |
45 | 44 | adantl 275 | . . . . . . 7 inr |
46 | simpr 109 | . . . . . . 7 | |
47 | 45, 46 | eqeltrd 2234 | . . . . . 6 inr |
48 | 43, 47 | ffvelrnd 5600 | . . . . 5 inr |
49 | 23, 40, 42, 48 | fvmptd 5546 | . . . 4 inr inr |
50 | 22, 49 | eqtrd 2190 | . . 3 inr inr |
51 | 45 | fveq2d 5469 | . . 3 inr |
52 | 19, 50, 51 | 3eqtrd 2194 | . 2 inr |
53 | 15, 17, 52 | eqfnfvd 5565 | 1 inr |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1335 wcel 2128 wss 3102 c0 3394 cif 3505 cmpt 4025 crn 4584 cres 4585 ccom 4587 wfn 5162 wf 5163 wf1 5164 cfv 5167 c1st 6080 c2nd 6081 c1o 6350 ⊔ cdju 6971 inrcinr 6980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4252 df-iord 4325 df-on 4327 df-suc 4330 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-1st 6082 df-2nd 6083 df-1o 6357 df-dju 6972 df-inl 6981 df-inr 6982 |
This theorem is referenced by: updjud 7016 |
Copyright terms: Public domain | W3C validator |