ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  updjudhcoinlf Unicode version

Theorem updjudhcoinlf 7155
Description: The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the left injection equals the first function. (Contributed by AV, 27-Jun-2022.)
Hypotheses
Ref Expression
updjud.f  |-  ( ph  ->  F : A --> C )
updjud.g  |-  ( ph  ->  G : B --> C )
updjudhf.h  |-  H  =  ( x  e.  ( A B )  |->  if ( ( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) ) )
Assertion
Ref Expression
updjudhcoinlf  |-  ( ph  ->  ( H  o.  (inl  |`  A ) )  =  F )
Distinct variable groups:    x, A    x, B    x, C    ph, x    x, F
Allowed substitution hints:    G( x)    H( x)

Proof of Theorem updjudhcoinlf
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 updjud.f . . . . 5  |-  ( ph  ->  F : A --> C )
2 updjud.g . . . . 5  |-  ( ph  ->  G : B --> C )
3 updjudhf.h . . . . 5  |-  H  =  ( x  e.  ( A B )  |->  if ( ( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) ) )
41, 2, 3updjudhf 7154 . . . 4  |-  ( ph  ->  H : ( A B ) --> C )
5 ffn 5410 . . . 4  |-  ( H : ( A B ) --> C  ->  H  Fn  ( A B ) )
64, 5syl 14 . . 3  |-  ( ph  ->  H  Fn  ( A B ) )
7 inlresf1 7136 . . . 4  |-  (inl  |`  A ) : A -1-1-> ( A B )
8 f1fn 5468 . . . 4  |-  ( (inl  |`  A ) : A -1-1-> ( A B )  ->  (inl  |`  A )  Fn  A
)
97, 8mp1i 10 . . 3  |-  ( ph  ->  (inl  |`  A )  Fn  A )
10 f1f 5466 . . . . 5  |-  ( (inl  |`  A ) : A -1-1-> ( A B )  ->  (inl  |`  A ) : A --> ( A B ) )
117, 10ax-mp 5 . . . 4  |-  (inl  |`  A ) : A --> ( A B )
12 frn 5419 . . . 4  |-  ( (inl  |`  A ) : A --> ( A B )  ->  ran  (inl  |`  A )  C_  ( A B ) )
1311, 12mp1i 10 . . 3  |-  ( ph  ->  ran  (inl  |`  A ) 
C_  ( A B ) )
14 fnco 5369 . . 3  |-  ( ( H  Fn  ( A B )  /\  (inl  |`  A )  Fn  A  /\  ran  (inl  |`  A ) 
C_  ( A B ) )  ->  ( H  o.  (inl  |`  A ) )  Fn  A )
156, 9, 13, 14syl3anc 1249 . 2  |-  ( ph  ->  ( H  o.  (inl  |`  A ) )  Fn  A )
16 ffn 5410 . . 3  |-  ( F : A --> C  ->  F  Fn  A )
171, 16syl 14 . 2  |-  ( ph  ->  F  Fn  A )
18 fvco2 5633 . . . 4  |-  ( ( (inl  |`  A )  Fn  A  /\  a  e.  A )  ->  (
( H  o.  (inl  |`  A ) ) `  a )  =  ( H `  ( (inl  |`  A ) `  a
) ) )
199, 18sylan 283 . . 3  |-  ( (
ph  /\  a  e.  A )  ->  (
( H  o.  (inl  |`  A ) ) `  a )  =  ( H `  ( (inl  |`  A ) `  a
) ) )
20 fvres 5585 . . . . . 6  |-  ( a  e.  A  ->  (
(inl  |`  A ) `  a )  =  (inl
`  a ) )
2120adantl 277 . . . . 5  |-  ( (
ph  /\  a  e.  A )  ->  (
(inl  |`  A ) `  a )  =  (inl
`  a ) )
2221fveq2d 5565 . . . 4  |-  ( (
ph  /\  a  e.  A )  ->  ( H `  ( (inl  |`  A ) `  a
) )  =  ( H `  (inl `  a ) ) )
233a1i 9 . . . . 5  |-  ( (
ph  /\  a  e.  A )  ->  H  =  ( x  e.  ( A B )  |->  if ( ( 1st `  x )  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) ) ) )
24 fveq2 5561 . . . . . . . . 9  |-  ( x  =  (inl `  a
)  ->  ( 1st `  x )  =  ( 1st `  (inl `  a ) ) )
2524eqeq1d 2205 . . . . . . . 8  |-  ( x  =  (inl `  a
)  ->  ( ( 1st `  x )  =  (/) 
<->  ( 1st `  (inl `  a ) )  =  (/) ) )
26 fveq2 5561 . . . . . . . . 9  |-  ( x  =  (inl `  a
)  ->  ( 2nd `  x )  =  ( 2nd `  (inl `  a ) ) )
2726fveq2d 5565 . . . . . . . 8  |-  ( x  =  (inl `  a
)  ->  ( F `  ( 2nd `  x
) )  =  ( F `  ( 2nd `  (inl `  a )
) ) )
2826fveq2d 5565 . . . . . . . 8  |-  ( x  =  (inl `  a
)  ->  ( G `  ( 2nd `  x
) )  =  ( G `  ( 2nd `  (inl `  a )
) ) )
2925, 27, 28ifbieq12d 3588 . . . . . . 7  |-  ( x  =  (inl `  a
)  ->  if (
( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) )  =  if ( ( 1st `  (inl `  a ) )  =  (/) ,  ( F `  ( 2nd `  (inl `  a ) ) ) ,  ( G `  ( 2nd `  (inl `  a ) ) ) ) )
3029adantl 277 . . . . . 6  |-  ( ( ( ph  /\  a  e.  A )  /\  x  =  (inl `  a )
)  ->  if (
( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) )  =  if ( ( 1st `  (inl `  a ) )  =  (/) ,  ( F `  ( 2nd `  (inl `  a ) ) ) ,  ( G `  ( 2nd `  (inl `  a ) ) ) ) )
31 1stinl 7149 . . . . . . . . 9  |-  ( a  e.  A  ->  ( 1st `  (inl `  a
) )  =  (/) )
3231adantl 277 . . . . . . . 8  |-  ( (
ph  /\  a  e.  A )  ->  ( 1st `  (inl `  a
) )  =  (/) )
3332adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  A )  /\  x  =  (inl `  a )
)  ->  ( 1st `  (inl `  a )
)  =  (/) )
3433iftrued 3569 . . . . . 6  |-  ( ( ( ph  /\  a  e.  A )  /\  x  =  (inl `  a )
)  ->  if (
( 1st `  (inl `  a ) )  =  (/) ,  ( F `  ( 2nd `  (inl `  a ) ) ) ,  ( G `  ( 2nd `  (inl `  a ) ) ) )  =  ( F `
 ( 2nd `  (inl `  a ) ) ) )
3530, 34eqtrd 2229 . . . . 5  |-  ( ( ( ph  /\  a  e.  A )  /\  x  =  (inl `  a )
)  ->  if (
( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) )  =  ( F `
 ( 2nd `  (inl `  a ) ) ) )
36 djulcl 7126 . . . . . 6  |-  ( a  e.  A  ->  (inl `  a )  e.  ( A B ) )
3736adantl 277 . . . . 5  |-  ( (
ph  /\  a  e.  A )  ->  (inl `  a )  e.  ( A B ) )
381adantr 276 . . . . . 6  |-  ( (
ph  /\  a  e.  A )  ->  F : A --> C )
39 2ndinl 7150 . . . . . . . 8  |-  ( a  e.  A  ->  ( 2nd `  (inl `  a
) )  =  a )
4039adantl 277 . . . . . . 7  |-  ( (
ph  /\  a  e.  A )  ->  ( 2nd `  (inl `  a
) )  =  a )
41 simpr 110 . . . . . . 7  |-  ( (
ph  /\  a  e.  A )  ->  a  e.  A )
4240, 41eqeltrd 2273 . . . . . 6  |-  ( (
ph  /\  a  e.  A )  ->  ( 2nd `  (inl `  a
) )  e.  A
)
4338, 42ffvelcdmd 5701 . . . . 5  |-  ( (
ph  /\  a  e.  A )  ->  ( F `  ( 2nd `  (inl `  a )
) )  e.  C
)
4423, 35, 37, 43fvmptd 5645 . . . 4  |-  ( (
ph  /\  a  e.  A )  ->  ( H `  (inl `  a
) )  =  ( F `  ( 2nd `  (inl `  a )
) ) )
4522, 44eqtrd 2229 . . 3  |-  ( (
ph  /\  a  e.  A )  ->  ( H `  ( (inl  |`  A ) `  a
) )  =  ( F `  ( 2nd `  (inl `  a )
) ) )
4640fveq2d 5565 . . 3  |-  ( (
ph  /\  a  e.  A )  ->  ( F `  ( 2nd `  (inl `  a )
) )  =  ( F `  a ) )
4719, 45, 463eqtrd 2233 . 2  |-  ( (
ph  /\  a  e.  A )  ->  (
( H  o.  (inl  |`  A ) ) `  a )  =  ( F `  a ) )
4815, 17, 47eqfnfvd 5665 1  |-  ( ph  ->  ( H  o.  (inl  |`  A ) )  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    C_ wss 3157   (/)c0 3451   ifcif 3562    |-> cmpt 4095   ran crn 4665    |` cres 4666    o. ccom 4668    Fn wfn 5254   -->wf 5255   -1-1->wf1 5256   ` cfv 5259   1stc1st 6205   2ndc2nd 6206   ⊔ cdju 7112  inlcinl 7120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-1st 6207  df-2nd 6208  df-1o 6483  df-dju 7113  df-inl 7122  df-inr 7123
This theorem is referenced by:  updjud  7157
  Copyright terms: Public domain W3C validator