| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > updjudhcoinlf | Unicode version | ||
| Description: The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the left injection equals the first function. (Contributed by AV, 27-Jun-2022.) | 
| Ref | Expression | 
|---|---|
| updjud.f | 
 | 
| updjud.g | 
 | 
| updjudhf.h | 
 | 
| Ref | Expression | 
|---|---|
| updjudhcoinlf | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | updjud.f | 
. . . . 5
 | |
| 2 | updjud.g | 
. . . . 5
 | |
| 3 | updjudhf.h | 
. . . . 5
 | |
| 4 | 1, 2, 3 | updjudhf 7145 | 
. . . 4
 | 
| 5 | ffn 5407 | 
. . . 4
 | |
| 6 | 4, 5 | syl 14 | 
. . 3
 | 
| 7 | inlresf1 7127 | 
. . . 4
 | |
| 8 | f1fn 5465 | 
. . . 4
 | |
| 9 | 7, 8 | mp1i 10 | 
. . 3
 | 
| 10 | f1f 5463 | 
. . . . 5
 | |
| 11 | 7, 10 | ax-mp 5 | 
. . . 4
 | 
| 12 | frn 5416 | 
. . . 4
 | |
| 13 | 11, 12 | mp1i 10 | 
. . 3
 | 
| 14 | fnco 5366 | 
. . 3
 | |
| 15 | 6, 9, 13, 14 | syl3anc 1249 | 
. 2
 | 
| 16 | ffn 5407 | 
. . 3
 | |
| 17 | 1, 16 | syl 14 | 
. 2
 | 
| 18 | fvco2 5630 | 
. . . 4
 | |
| 19 | 9, 18 | sylan 283 | 
. . 3
 | 
| 20 | fvres 5582 | 
. . . . . 6
 | |
| 21 | 20 | adantl 277 | 
. . . . 5
 | 
| 22 | 21 | fveq2d 5562 | 
. . . 4
 | 
| 23 | 3 | a1i 9 | 
. . . . 5
 | 
| 24 | fveq2 5558 | 
. . . . . . . . 9
 | |
| 25 | 24 | eqeq1d 2205 | 
. . . . . . . 8
 | 
| 26 | fveq2 5558 | 
. . . . . . . . 9
 | |
| 27 | 26 | fveq2d 5562 | 
. . . . . . . 8
 | 
| 28 | 26 | fveq2d 5562 | 
. . . . . . . 8
 | 
| 29 | 25, 27, 28 | ifbieq12d 3587 | 
. . . . . . 7
 | 
| 30 | 29 | adantl 277 | 
. . . . . 6
 | 
| 31 | 1stinl 7140 | 
. . . . . . . . 9
 | |
| 32 | 31 | adantl 277 | 
. . . . . . . 8
 | 
| 33 | 32 | adantr 276 | 
. . . . . . 7
 | 
| 34 | 33 | iftrued 3568 | 
. . . . . 6
 | 
| 35 | 30, 34 | eqtrd 2229 | 
. . . . 5
 | 
| 36 | djulcl 7117 | 
. . . . . 6
 | |
| 37 | 36 | adantl 277 | 
. . . . 5
 | 
| 38 | 1 | adantr 276 | 
. . . . . 6
 | 
| 39 | 2ndinl 7141 | 
. . . . . . . 8
 | |
| 40 | 39 | adantl 277 | 
. . . . . . 7
 | 
| 41 | simpr 110 | 
. . . . . . 7
 | |
| 42 | 40, 41 | eqeltrd 2273 | 
. . . . . 6
 | 
| 43 | 38, 42 | ffvelcdmd 5698 | 
. . . . 5
 | 
| 44 | 23, 35, 37, 43 | fvmptd 5642 | 
. . . 4
 | 
| 45 | 22, 44 | eqtrd 2229 | 
. . 3
 | 
| 46 | 40 | fveq2d 5562 | 
. . 3
 | 
| 47 | 19, 45, 46 | 3eqtrd 2233 | 
. 2
 | 
| 48 | 15, 17, 47 | eqfnfvd 5662 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-1st 6198 df-2nd 6199 df-1o 6474 df-dju 7104 df-inl 7113 df-inr 7114 | 
| This theorem is referenced by: updjud 7148 | 
| Copyright terms: Public domain | W3C validator |