| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > updjudhcoinlf | Unicode version | ||
| Description: The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the left injection equals the first function. (Contributed by AV, 27-Jun-2022.) |
| Ref | Expression |
|---|---|
| updjud.f |
|
| updjud.g |
|
| updjudhf.h |
|
| Ref | Expression |
|---|---|
| updjudhcoinlf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | updjud.f |
. . . . 5
| |
| 2 | updjud.g |
. . . . 5
| |
| 3 | updjudhf.h |
. . . . 5
| |
| 4 | 1, 2, 3 | updjudhf 7183 |
. . . 4
|
| 5 | ffn 5427 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | inlresf1 7165 |
. . . 4
| |
| 8 | f1fn 5485 |
. . . 4
| |
| 9 | 7, 8 | mp1i 10 |
. . 3
|
| 10 | f1f 5483 |
. . . . 5
| |
| 11 | 7, 10 | ax-mp 5 |
. . . 4
|
| 12 | frn 5436 |
. . . 4
| |
| 13 | 11, 12 | mp1i 10 |
. . 3
|
| 14 | fnco 5385 |
. . 3
| |
| 15 | 6, 9, 13, 14 | syl3anc 1250 |
. 2
|
| 16 | ffn 5427 |
. . 3
| |
| 17 | 1, 16 | syl 14 |
. 2
|
| 18 | fvco2 5650 |
. . . 4
| |
| 19 | 9, 18 | sylan 283 |
. . 3
|
| 20 | fvres 5602 |
. . . . . 6
| |
| 21 | 20 | adantl 277 |
. . . . 5
|
| 22 | 21 | fveq2d 5582 |
. . . 4
|
| 23 | 3 | a1i 9 |
. . . . 5
|
| 24 | fveq2 5578 |
. . . . . . . . 9
| |
| 25 | 24 | eqeq1d 2214 |
. . . . . . . 8
|
| 26 | fveq2 5578 |
. . . . . . . . 9
| |
| 27 | 26 | fveq2d 5582 |
. . . . . . . 8
|
| 28 | 26 | fveq2d 5582 |
. . . . . . . 8
|
| 29 | 25, 27, 28 | ifbieq12d 3597 |
. . . . . . 7
|
| 30 | 29 | adantl 277 |
. . . . . 6
|
| 31 | 1stinl 7178 |
. . . . . . . . 9
| |
| 32 | 31 | adantl 277 |
. . . . . . . 8
|
| 33 | 32 | adantr 276 |
. . . . . . 7
|
| 34 | 33 | iftrued 3578 |
. . . . . 6
|
| 35 | 30, 34 | eqtrd 2238 |
. . . . 5
|
| 36 | djulcl 7155 |
. . . . . 6
| |
| 37 | 36 | adantl 277 |
. . . . 5
|
| 38 | 1 | adantr 276 |
. . . . . 6
|
| 39 | 2ndinl 7179 |
. . . . . . . 8
| |
| 40 | 39 | adantl 277 |
. . . . . . 7
|
| 41 | simpr 110 |
. . . . . . 7
| |
| 42 | 40, 41 | eqeltrd 2282 |
. . . . . 6
|
| 43 | 38, 42 | ffvelcdmd 5718 |
. . . . 5
|
| 44 | 23, 35, 37, 43 | fvmptd 5662 |
. . . 4
|
| 45 | 22, 44 | eqtrd 2238 |
. . 3
|
| 46 | 40 | fveq2d 5582 |
. . 3
|
| 47 | 19, 45, 46 | 3eqtrd 2242 |
. 2
|
| 48 | 15, 17, 47 | eqfnfvd 5682 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-iord 4414 df-on 4416 df-suc 4419 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-1st 6228 df-2nd 6229 df-1o 6504 df-dju 7142 df-inl 7151 df-inr 7152 |
| This theorem is referenced by: updjud 7186 |
| Copyright terms: Public domain | W3C validator |