| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > updjudhcoinlf | Unicode version | ||
| Description: The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the left injection equals the first function. (Contributed by AV, 27-Jun-2022.) |
| Ref | Expression |
|---|---|
| updjud.f |
|
| updjud.g |
|
| updjudhf.h |
|
| Ref | Expression |
|---|---|
| updjudhcoinlf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | updjud.f |
. . . . 5
| |
| 2 | updjud.g |
. . . . 5
| |
| 3 | updjudhf.h |
. . . . 5
| |
| 4 | 1, 2, 3 | updjudhf 7154 |
. . . 4
|
| 5 | ffn 5410 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | inlresf1 7136 |
. . . 4
| |
| 8 | f1fn 5468 |
. . . 4
| |
| 9 | 7, 8 | mp1i 10 |
. . 3
|
| 10 | f1f 5466 |
. . . . 5
| |
| 11 | 7, 10 | ax-mp 5 |
. . . 4
|
| 12 | frn 5419 |
. . . 4
| |
| 13 | 11, 12 | mp1i 10 |
. . 3
|
| 14 | fnco 5369 |
. . 3
| |
| 15 | 6, 9, 13, 14 | syl3anc 1249 |
. 2
|
| 16 | ffn 5410 |
. . 3
| |
| 17 | 1, 16 | syl 14 |
. 2
|
| 18 | fvco2 5633 |
. . . 4
| |
| 19 | 9, 18 | sylan 283 |
. . 3
|
| 20 | fvres 5585 |
. . . . . 6
| |
| 21 | 20 | adantl 277 |
. . . . 5
|
| 22 | 21 | fveq2d 5565 |
. . . 4
|
| 23 | 3 | a1i 9 |
. . . . 5
|
| 24 | fveq2 5561 |
. . . . . . . . 9
| |
| 25 | 24 | eqeq1d 2205 |
. . . . . . . 8
|
| 26 | fveq2 5561 |
. . . . . . . . 9
| |
| 27 | 26 | fveq2d 5565 |
. . . . . . . 8
|
| 28 | 26 | fveq2d 5565 |
. . . . . . . 8
|
| 29 | 25, 27, 28 | ifbieq12d 3588 |
. . . . . . 7
|
| 30 | 29 | adantl 277 |
. . . . . 6
|
| 31 | 1stinl 7149 |
. . . . . . . . 9
| |
| 32 | 31 | adantl 277 |
. . . . . . . 8
|
| 33 | 32 | adantr 276 |
. . . . . . 7
|
| 34 | 33 | iftrued 3569 |
. . . . . 6
|
| 35 | 30, 34 | eqtrd 2229 |
. . . . 5
|
| 36 | djulcl 7126 |
. . . . . 6
| |
| 37 | 36 | adantl 277 |
. . . . 5
|
| 38 | 1 | adantr 276 |
. . . . . 6
|
| 39 | 2ndinl 7150 |
. . . . . . . 8
| |
| 40 | 39 | adantl 277 |
. . . . . . 7
|
| 41 | simpr 110 |
. . . . . . 7
| |
| 42 | 40, 41 | eqeltrd 2273 |
. . . . . 6
|
| 43 | 38, 42 | ffvelcdmd 5701 |
. . . . 5
|
| 44 | 23, 35, 37, 43 | fvmptd 5645 |
. . . 4
|
| 45 | 22, 44 | eqtrd 2229 |
. . 3
|
| 46 | 40 | fveq2d 5565 |
. . 3
|
| 47 | 19, 45, 46 | 3eqtrd 2233 |
. 2
|
| 48 | 15, 17, 47 | eqfnfvd 5665 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-1st 6207 df-2nd 6208 df-1o 6483 df-dju 7113 df-inl 7122 df-inr 7123 |
| This theorem is referenced by: updjud 7157 |
| Copyright terms: Public domain | W3C validator |