| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > updjudhcoinlf | Unicode version | ||
| Description: The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the left injection equals the first function. (Contributed by AV, 27-Jun-2022.) |
| Ref | Expression |
|---|---|
| updjud.f |
|
| updjud.g |
|
| updjudhf.h |
|
| Ref | Expression |
|---|---|
| updjudhcoinlf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | updjud.f |
. . . . 5
| |
| 2 | updjud.g |
. . . . 5
| |
| 3 | updjudhf.h |
. . . . 5
| |
| 4 | 1, 2, 3 | updjudhf 7207 |
. . . 4
|
| 5 | ffn 5445 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | inlresf1 7189 |
. . . 4
| |
| 8 | f1fn 5505 |
. . . 4
| |
| 9 | 7, 8 | mp1i 10 |
. . 3
|
| 10 | f1f 5503 |
. . . . 5
| |
| 11 | 7, 10 | ax-mp 5 |
. . . 4
|
| 12 | frn 5454 |
. . . 4
| |
| 13 | 11, 12 | mp1i 10 |
. . 3
|
| 14 | fnco 5403 |
. . 3
| |
| 15 | 6, 9, 13, 14 | syl3anc 1250 |
. 2
|
| 16 | ffn 5445 |
. . 3
| |
| 17 | 1, 16 | syl 14 |
. 2
|
| 18 | fvco2 5671 |
. . . 4
| |
| 19 | 9, 18 | sylan 283 |
. . 3
|
| 20 | fvres 5623 |
. . . . . 6
| |
| 21 | 20 | adantl 277 |
. . . . 5
|
| 22 | 21 | fveq2d 5603 |
. . . 4
|
| 23 | 3 | a1i 9 |
. . . . 5
|
| 24 | fveq2 5599 |
. . . . . . . . 9
| |
| 25 | 24 | eqeq1d 2216 |
. . . . . . . 8
|
| 26 | fveq2 5599 |
. . . . . . . . 9
| |
| 27 | 26 | fveq2d 5603 |
. . . . . . . 8
|
| 28 | 26 | fveq2d 5603 |
. . . . . . . 8
|
| 29 | 25, 27, 28 | ifbieq12d 3606 |
. . . . . . 7
|
| 30 | 29 | adantl 277 |
. . . . . 6
|
| 31 | 1stinl 7202 |
. . . . . . . . 9
| |
| 32 | 31 | adantl 277 |
. . . . . . . 8
|
| 33 | 32 | adantr 276 |
. . . . . . 7
|
| 34 | 33 | iftrued 3586 |
. . . . . 6
|
| 35 | 30, 34 | eqtrd 2240 |
. . . . 5
|
| 36 | djulcl 7179 |
. . . . . 6
| |
| 37 | 36 | adantl 277 |
. . . . 5
|
| 38 | 1 | adantr 276 |
. . . . . 6
|
| 39 | 2ndinl 7203 |
. . . . . . . 8
| |
| 40 | 39 | adantl 277 |
. . . . . . 7
|
| 41 | simpr 110 |
. . . . . . 7
| |
| 42 | 40, 41 | eqeltrd 2284 |
. . . . . 6
|
| 43 | 38, 42 | ffvelcdmd 5739 |
. . . . 5
|
| 44 | 23, 35, 37, 43 | fvmptd 5683 |
. . . 4
|
| 45 | 22, 44 | eqtrd 2240 |
. . 3
|
| 46 | 40 | fveq2d 5603 |
. . 3
|
| 47 | 19, 45, 46 | 3eqtrd 2244 |
. 2
|
| 48 | 15, 17, 47 | eqfnfvd 5703 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-1st 6249 df-2nd 6250 df-1o 6525 df-dju 7166 df-inl 7175 df-inr 7176 |
| This theorem is referenced by: updjud 7210 |
| Copyright terms: Public domain | W3C validator |