ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fxnn0nninf Unicode version

Theorem fxnn0nninf 10513
Description: A function from NN0* into ℕ. (Contributed by Jim Kingdon, 16-Jul-2022.) TODO: use infnninf 7185 instead of infnninfOLD 7186. More generally, this theorem and most theorems in this section could use an extended  G defined by  G  =  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )  u.  <. om , +oo >. ) and  F  =  ( n  e.  suc  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) as in nnnninf2 7188.
Hypotheses
Ref Expression
fxnn0nninf.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
fxnn0nninf.f  |-  F  =  ( n  e.  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
fxnn0nninf.i  |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )
Assertion
Ref Expression
fxnn0nninf  |-  I :NN0* -->
Distinct variable group:    i, n
Allowed substitution hints:    F( x, i, n)    G( x, i, n)    I( x, i, n)

Proof of Theorem fxnn0nninf
StepHypRef Expression
1 fxnn0nninf.g . . . . . 6  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
2 fxnn0nninf.f . . . . . 6  |-  F  =  ( n  e.  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
31, 2fnn0nninf 10512 . . . . 5  |-  ( F  o.  `' G ) : NN0 -->
4 pnfex 8075 . . . . . . . 8  |- +oo  e.  _V
5 omex 4626 . . . . . . . . 9  |-  om  e.  _V
6 1oex 6479 . . . . . . . . . 10  |-  1o  e.  _V
76snex 4215 . . . . . . . . 9  |-  { 1o }  e.  _V
85, 7xpex 4775 . . . . . . . 8  |-  ( om 
X.  { 1o }
)  e.  _V
94, 8f1osn 5541 . . . . . . 7  |-  { <. +oo ,  ( om  X.  { 1o } ) >. } : { +oo } -1-1-onto-> {
( om  X.  { 1o } ) }
10 f1of 5501 . . . . . . 7  |-  ( {
<. +oo ,  ( om 
X.  { 1o }
) >. } : { +oo } -1-1-onto-> { ( om  X.  { 1o } ) }  ->  { <. +oo , 
( om  X.  { 1o } ) >. } : { +oo } --> { ( om  X.  { 1o } ) } )
119, 10ax-mp 5 . . . . . 6  |-  { <. +oo ,  ( om  X.  { 1o } ) >. } : { +oo } --> { ( om  X.  { 1o } ) }
12 infnninfOLD 7186 . . . . . . 7  |-  ( om 
X.  { 1o }
)  e.
13 snssi 3763 . . . . . . 7  |-  ( ( om  X.  { 1o } )  e.  ->  { ( om 
X.  { 1o }
) }  C_ )
1412, 13ax-mp 5 . . . . . 6  |-  { ( om  X.  { 1o } ) }  C_
15 fss 5416 . . . . . 6  |-  ( ( { <. +oo ,  ( om  X.  { 1o } ) >. } : { +oo } --> { ( om  X.  { 1o } ) }  /\  { ( om  X.  { 1o } ) }  C_ )  ->  { <. +oo ,  ( om 
X.  { 1o }
) >. } : { +oo } --> )
1611, 14, 15mp2an 426 . . . . 5  |-  { <. +oo ,  ( om  X.  { 1o } ) >. } : { +oo } -->
173, 16pm3.2i 272 . . . 4  |-  ( ( F  o.  `' G
) : NN0 -->  /\ 
{ <. +oo ,  ( om 
X.  { 1o }
) >. } : { +oo } --> )
18 disj 3496 . . . . 5  |-  ( ( NN0  i^i  { +oo } )  =  (/)  <->  A. x  e.  NN0  -.  x  e. 
{ +oo } )
19 nn0nepnf 9314 . . . . . . 7  |-  ( x  e.  NN0  ->  x  =/= +oo )
2019neneqd 2385 . . . . . 6  |-  ( x  e.  NN0  ->  -.  x  = +oo )
21 elsni 3637 . . . . . 6  |-  ( x  e.  { +oo }  ->  x  = +oo )
2220, 21nsyl 629 . . . . 5  |-  ( x  e.  NN0  ->  -.  x  e.  { +oo } )
2318, 22mprgbir 2552 . . . 4  |-  ( NN0 
i^i  { +oo } )  =  (/)
24 fun2 5428 . . . 4  |-  ( ( ( ( F  o.  `' G ) : NN0 -->  /\  { <. +oo ,  ( om 
X.  { 1o }
) >. } : { +oo } --> )  /\  ( NN0  i^i  { +oo } )  =  (/) )  ->  ( ( F  o.  `' G
)  u.  { <. +oo ,  ( om  X.  { 1o } ) >. } ) : ( NN0  u.  { +oo } ) --> )
2517, 23, 24mp2an 426 . . 3  |-  ( ( F  o.  `' G
)  u.  { <. +oo ,  ( om  X.  { 1o } ) >. } ) : ( NN0  u.  { +oo } ) -->
26 fxnn0nninf.i . . . 4  |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )
2726feq1i 5397 . . 3  |-  ( I : ( NN0  u.  { +oo } ) -->  <->  ( ( F  o.  `' G
)  u.  { <. +oo ,  ( om  X.  { 1o } ) >. } ) : ( NN0  u.  { +oo } ) --> )
2825, 27mpbir 146 . 2  |-  I : ( NN0  u.  { +oo } ) -->
29 df-xnn0 9307 . . 3  |- NN0*  =  ( NN0  u.  { +oo } )
3029feq2i 5398 . 2  |-  ( I :NN0* -->  <->  I : ( NN0  u.  { +oo } ) --> )
3128, 30mpbir 146 1  |-  I :NN0* -->
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    = wceq 1364    e. wcel 2164    u. cun 3152    i^i cin 3153    C_ wss 3154   (/)c0 3447   ifcif 3558   {csn 3619   <.cop 3622    |-> cmpt 4091   omcom 4623    X. cxp 4658   `'ccnv 4659    o. ccom 4664   -->wf 5251   -1-1-onto->wf1o 5254  (class class class)co 5919  freccfrec 6445   1oc1o 6464  ℕxnninf 7180   0cc0 7874   1c1 7875    + caddc 7877   +oocpnf 8053   NN0cn0 9243  NN0*cxnn0 9306   ZZcz 9320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-recs 6360  df-frec 6446  df-1o 6471  df-2o 6472  df-map 6706  df-nninf 7181  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-xnn0 9307  df-z 9321  df-uz 9596
This theorem is referenced by:  nninfctlemfo  12180
  Copyright terms: Public domain W3C validator