Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fxnn0nninf | Unicode version |
Description: A function from NN0* into ℕ∞. (Contributed by Jim Kingdon, 16-Jul-2022.) TODO: use infnninf 7100 instead of infnninfOLD 7101. More generally, this theorem and most theorems in this section could use an extended defined by frec and as in nnnninf2 7103. |
Ref | Expression |
---|---|
fxnn0nninf.g | frec |
fxnn0nninf.f | |
fxnn0nninf.i |
Ref | Expression |
---|---|
fxnn0nninf | NN0*ℕ∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fxnn0nninf.g | . . . . . 6 frec | |
2 | fxnn0nninf.f | . . . . . 6 | |
3 | 1, 2 | fnn0nninf 10393 | . . . . 5 ℕ∞ |
4 | pnfex 7973 | . . . . . . . 8 | |
5 | omex 4577 | . . . . . . . . 9 | |
6 | 1oex 6403 | . . . . . . . . . 10 | |
7 | 6 | snex 4171 | . . . . . . . . 9 |
8 | 5, 7 | xpex 4726 | . . . . . . . 8 |
9 | 4, 8 | f1osn 5482 | . . . . . . 7 |
10 | f1of 5442 | . . . . . . 7 | |
11 | 9, 10 | ax-mp 5 | . . . . . 6 |
12 | infnninfOLD 7101 | . . . . . . 7 ℕ∞ | |
13 | snssi 3724 | . . . . . . 7 ℕ∞ ℕ∞ | |
14 | 12, 13 | ax-mp 5 | . . . . . 6 ℕ∞ |
15 | fss 5359 | . . . . . 6 ℕ∞ ℕ∞ | |
16 | 11, 14, 15 | mp2an 424 | . . . . 5 ℕ∞ |
17 | 3, 16 | pm3.2i 270 | . . . 4 ℕ∞ ℕ∞ |
18 | disj 3463 | . . . . 5 | |
19 | nn0nepnf 9206 | . . . . . . 7 | |
20 | 19 | neneqd 2361 | . . . . . 6 |
21 | elsni 3601 | . . . . . 6 | |
22 | 20, 21 | nsyl 623 | . . . . 5 |
23 | 18, 22 | mprgbir 2528 | . . . 4 |
24 | fun2 5371 | . . . 4 ℕ∞ ℕ∞ ℕ∞ | |
25 | 17, 23, 24 | mp2an 424 | . . 3 ℕ∞ |
26 | fxnn0nninf.i | . . . 4 | |
27 | 26 | feq1i 5340 | . . 3 ℕ∞ ℕ∞ |
28 | 25, 27 | mpbir 145 | . 2 ℕ∞ |
29 | df-xnn0 9199 | . . 3 NN0* | |
30 | 29 | feq2i 5341 | . 2 NN0*ℕ∞ ℕ∞ |
31 | 28, 30 | mpbir 145 | 1 NN0*ℕ∞ |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wceq 1348 wcel 2141 cun 3119 cin 3120 wss 3121 c0 3414 cif 3526 csn 3583 cop 3586 cmpt 4050 com 4574 cxp 4609 ccnv 4610 ccom 4615 wf 5194 wf1o 5197 (class class class)co 5853 freccfrec 6369 c1o 6388 ℕ∞xnninf 7096 cc0 7774 c1 7775 caddc 7777 cpnf 7951 cn0 9135 NN0*cxnn0 9198 cz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-recs 6284 df-frec 6370 df-1o 6395 df-2o 6396 df-map 6628 df-nninf 7097 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-xnn0 9199 df-z 9213 df-uz 9488 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |