ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fxnn0nninf Unicode version

Theorem fxnn0nninf 10242
Description: A function from NN0* into ℕ. (Contributed by Jim Kingdon, 16-Jul-2022.)
Hypotheses
Ref Expression
fxnn0nninf.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
fxnn0nninf.f  |-  F  =  ( n  e.  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
fxnn0nninf.i  |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )
Assertion
Ref Expression
fxnn0nninf  |-  I :NN0* -->
Distinct variable group:    i, n
Allowed substitution hints:    F( x, i, n)    G( x, i, n)    I( x, i, n)

Proof of Theorem fxnn0nninf
StepHypRef Expression
1 fxnn0nninf.g . . . . . 6  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
2 fxnn0nninf.f . . . . . 6  |-  F  =  ( n  e.  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
31, 2fnn0nninf 10241 . . . . 5  |-  ( F  o.  `' G ) : NN0 -->
4 pnfex 7843 . . . . . . . 8  |- +oo  e.  _V
5 omex 4515 . . . . . . . . 9  |-  om  e.  _V
6 1oex 6329 . . . . . . . . . 10  |-  1o  e.  _V
76snex 4117 . . . . . . . . 9  |-  { 1o }  e.  _V
85, 7xpex 4662 . . . . . . . 8  |-  ( om 
X.  { 1o }
)  e.  _V
94, 8f1osn 5415 . . . . . . 7  |-  { <. +oo ,  ( om  X.  { 1o } ) >. } : { +oo } -1-1-onto-> {
( om  X.  { 1o } ) }
10 f1of 5375 . . . . . . 7  |-  ( {
<. +oo ,  ( om 
X.  { 1o }
) >. } : { +oo } -1-1-onto-> { ( om  X.  { 1o } ) }  ->  { <. +oo , 
( om  X.  { 1o } ) >. } : { +oo } --> { ( om  X.  { 1o } ) } )
119, 10ax-mp 5 . . . . . 6  |-  { <. +oo ,  ( om  X.  { 1o } ) >. } : { +oo } --> { ( om  X.  { 1o } ) }
12 infnninf 7030 . . . . . . 7  |-  ( om 
X.  { 1o }
)  e.
13 snssi 3672 . . . . . . 7  |-  ( ( om  X.  { 1o } )  e.  ->  { ( om 
X.  { 1o }
) }  C_ )
1412, 13ax-mp 5 . . . . . 6  |-  { ( om  X.  { 1o } ) }  C_
15 fss 5292 . . . . . 6  |-  ( ( { <. +oo ,  ( om  X.  { 1o } ) >. } : { +oo } --> { ( om  X.  { 1o } ) }  /\  { ( om  X.  { 1o } ) }  C_ )  ->  { <. +oo ,  ( om 
X.  { 1o }
) >. } : { +oo } --> )
1611, 14, 15mp2an 423 . . . . 5  |-  { <. +oo ,  ( om  X.  { 1o } ) >. } : { +oo } -->
173, 16pm3.2i 270 . . . 4  |-  ( ( F  o.  `' G
) : NN0 -->  /\ 
{ <. +oo ,  ( om 
X.  { 1o }
) >. } : { +oo } --> )
18 disj 3416 . . . . 5  |-  ( ( NN0  i^i  { +oo } )  =  (/)  <->  A. x  e.  NN0  -.  x  e. 
{ +oo } )
19 nn0nepnf 9072 . . . . . . 7  |-  ( x  e.  NN0  ->  x  =/= +oo )
2019neneqd 2330 . . . . . 6  |-  ( x  e.  NN0  ->  -.  x  = +oo )
21 elsni 3550 . . . . . 6  |-  ( x  e.  { +oo }  ->  x  = +oo )
2220, 21nsyl 618 . . . . 5  |-  ( x  e.  NN0  ->  -.  x  e.  { +oo } )
2318, 22mprgbir 2493 . . . 4  |-  ( NN0 
i^i  { +oo } )  =  (/)
24 fun2 5304 . . . 4  |-  ( ( ( ( F  o.  `' G ) : NN0 -->  /\  { <. +oo ,  ( om 
X.  { 1o }
) >. } : { +oo } --> )  /\  ( NN0  i^i  { +oo } )  =  (/) )  ->  ( ( F  o.  `' G
)  u.  { <. +oo ,  ( om  X.  { 1o } ) >. } ) : ( NN0  u.  { +oo } ) --> )
2517, 23, 24mp2an 423 . . 3  |-  ( ( F  o.  `' G
)  u.  { <. +oo ,  ( om  X.  { 1o } ) >. } ) : ( NN0  u.  { +oo } ) -->
26 fxnn0nninf.i . . . 4  |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )
2726feq1i 5273 . . 3  |-  ( I : ( NN0  u.  { +oo } ) -->  <->  ( ( F  o.  `' G
)  u.  { <. +oo ,  ( om  X.  { 1o } ) >. } ) : ( NN0  u.  { +oo } ) --> )
2825, 27mpbir 145 . 2  |-  I : ( NN0  u.  { +oo } ) -->
29 df-xnn0 9065 . . 3  |- NN0*  =  ( NN0  u.  { +oo } )
3029feq2i 5274 . 2  |-  ( I :NN0* -->  <->  I : ( NN0  u.  { +oo } ) --> )
3128, 30mpbir 145 1  |-  I :NN0* -->
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    = wceq 1332    e. wcel 1481    u. cun 3074    i^i cin 3075    C_ wss 3076   (/)c0 3368   ifcif 3479   {csn 3532   <.cop 3535    |-> cmpt 3997   omcom 4512    X. cxp 4545   `'ccnv 4546    o. ccom 4551   -->wf 5127   -1-1-onto->wf1o 5130  (class class class)co 5782  freccfrec 6295   1oc1o 6314  ℕxnninf 7013   0cc0 7644   1c1 7645    + caddc 7647   +oocpnf 7821   NN0cn0 9001  NN0*cxnn0 9064   ZZcz 9078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-recs 6210  df-frec 6296  df-1o 6321  df-2o 6322  df-map 6552  df-nninf 7015  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-xnn0 9065  df-z 9079  df-uz 9351
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator