ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemsucfn Unicode version

Theorem tfrcllemsucfn 6357
Description: We can extend an acceptable function by one element to produce a function. Lemma for tfrcl 6368. (Contributed by Jim Kingdon, 24-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f  |-  F  = recs ( G )
tfrcl.g  |-  ( ph  ->  Fun  G )
tfrcl.x  |-  ( ph  ->  Ord  X )
tfrcl.ex  |-  ( (
ph  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S )
tfrcllemsucfn.1  |-  A  =  { f  |  E. x  e.  X  (
f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
tfrcllemsucfn.3  |-  ( ph  ->  z  e.  X )
tfrcllemsucfn.4  |-  ( ph  ->  g : z --> S )
tfrcllemsucfn.5  |-  ( ph  ->  g  e.  A )
Assertion
Ref Expression
tfrcllemsucfn  |-  ( ph  ->  ( g  u.  { <. z ,  ( G `
 g ) >. } ) : suc  z
--> S )
Distinct variable groups:    f, G, x    S, f, x    f, X, x    f, g    ph, f, x    z, f, x
Allowed substitution hints:    ph( y, z, g)    A( x, y, z, f, g)    S( y, z, g)    F( x, y, z, f, g)    G( y, z, g)    X( y, z, g)

Proof of Theorem tfrcllemsucfn
StepHypRef Expression
1 tfrcllemsucfn.4 . . 3  |-  ( ph  ->  g : z --> S )
2 tfrcllemsucfn.3 . . . 4  |-  ( ph  ->  z  e.  X )
32elexd 2752 . . 3  |-  ( ph  ->  z  e.  _V )
4 tfrcl.x . . . . 5  |-  ( ph  ->  Ord  X )
5 ordelon 4385 . . . . 5  |-  ( ( Ord  X  /\  z  e.  X )  ->  z  e.  On )
64, 2, 5syl2anc 411 . . . 4  |-  ( ph  ->  z  e.  On )
7 eloni 4377 . . . 4  |-  ( z  e.  On  ->  Ord  z )
8 ordirr 4543 . . . 4  |-  ( Ord  z  ->  -.  z  e.  z )
96, 7, 83syl 17 . . 3  |-  ( ph  ->  -.  z  e.  z )
10 feq2 5351 . . . . . . 7  |-  ( x  =  z  ->  (
f : x --> S  <->  f :
z --> S ) )
1110imbi1d 231 . . . . . 6  |-  ( x  =  z  ->  (
( f : x --> S  ->  ( G `  f )  e.  S
)  <->  ( f : z --> S  ->  ( G `  f )  e.  S ) ) )
1211albidv 1824 . . . . 5  |-  ( x  =  z  ->  ( A. f ( f : x --> S  ->  ( G `  f )  e.  S )  <->  A. f
( f : z --> S  ->  ( G `  f )  e.  S
) ) )
13 tfrcl.ex . . . . . . . 8  |-  ( (
ph  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S )
14133expia 1205 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  (
f : x --> S  -> 
( G `  f
)  e.  S ) )
1514alrimiv 1874 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A. f
( f : x --> S  ->  ( G `  f )  e.  S
) )
1615ralrimiva 2550 . . . . 5  |-  ( ph  ->  A. x  e.  X  A. f ( f : x --> S  ->  ( G `  f )  e.  S ) )
1712, 16, 2rspcdva 2848 . . . 4  |-  ( ph  ->  A. f ( f : z --> S  -> 
( G `  f
)  e.  S ) )
18 feq1 5350 . . . . . 6  |-  ( f  =  g  ->  (
f : z --> S  <-> 
g : z --> S ) )
19 fveq2 5517 . . . . . . 7  |-  ( f  =  g  ->  ( G `  f )  =  ( G `  g ) )
2019eleq1d 2246 . . . . . 6  |-  ( f  =  g  ->  (
( G `  f
)  e.  S  <->  ( G `  g )  e.  S
) )
2118, 20imbi12d 234 . . . . 5  |-  ( f  =  g  ->  (
( f : z --> S  ->  ( G `  f )  e.  S
)  <->  ( g : z --> S  ->  ( G `  g )  e.  S ) ) )
2221spv 1860 . . . 4  |-  ( A. f ( f : z --> S  ->  ( G `  f )  e.  S )  ->  (
g : z --> S  ->  ( G `  g )  e.  S
) )
2317, 1, 22sylc 62 . . 3  |-  ( ph  ->  ( G `  g
)  e.  S )
24 fsnunf 5719 . . 3  |-  ( ( g : z --> S  /\  ( z  e. 
_V  /\  -.  z  e.  z )  /\  ( G `  g )  e.  S )  ->  (
g  u.  { <. z ,  ( G `  g ) >. } ) : ( z  u. 
{ z } ) --> S )
251, 3, 9, 23, 24syl121anc 1243 . 2  |-  ( ph  ->  ( g  u.  { <. z ,  ( G `
 g ) >. } ) : ( z  u.  { z } ) --> S )
26 df-suc 4373 . . 3  |-  suc  z  =  ( z  u. 
{ z } )
2726feq2i 5361 . 2  |-  ( ( g  u.  { <. z ,  ( G `  g ) >. } ) : suc  z --> S  <-> 
( g  u.  { <. z ,  ( G `
 g ) >. } ) : ( z  u.  { z } ) --> S )
2825, 27sylibr 134 1  |-  ( ph  ->  ( g  u.  { <. z ,  ( G `
 g ) >. } ) : suc  z
--> S )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 978   A.wal 1351    = wceq 1353    e. wcel 2148   {cab 2163   A.wral 2455   E.wrex 2456   _Vcvv 2739    u. cun 3129   {csn 3594   <.cop 3597   Ord word 4364   Oncon0 4365   suc csuc 4367    |` cres 4630   Fun wfun 5212   -->wf 5214   ` cfv 5218  recscrecs 6308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226
This theorem is referenced by:  tfrcllemsucaccv  6358  tfrcllembfn  6361
  Copyright terms: Public domain W3C validator