| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrcllemsucfn | Unicode version | ||
| Description: We can extend an acceptable function by one element to produce a function. Lemma for tfrcl 6508. (Contributed by Jim Kingdon, 24-Mar-2022.) |
| Ref | Expression |
|---|---|
| tfrcl.f |
|
| tfrcl.g |
|
| tfrcl.x |
|
| tfrcl.ex |
|
| tfrcllemsucfn.1 |
|
| tfrcllemsucfn.3 |
|
| tfrcllemsucfn.4 |
|
| tfrcllemsucfn.5 |
|
| Ref | Expression |
|---|---|
| tfrcllemsucfn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrcllemsucfn.4 |
. . 3
| |
| 2 | tfrcllemsucfn.3 |
. . . 4
| |
| 3 | 2 | elexd 2813 |
. . 3
|
| 4 | tfrcl.x |
. . . . 5
| |
| 5 | ordelon 4473 |
. . . . 5
| |
| 6 | 4, 2, 5 | syl2anc 411 |
. . . 4
|
| 7 | eloni 4465 |
. . . 4
| |
| 8 | ordirr 4633 |
. . . 4
| |
| 9 | 6, 7, 8 | 3syl 17 |
. . 3
|
| 10 | feq2 5456 |
. . . . . . 7
| |
| 11 | 10 | imbi1d 231 |
. . . . . 6
|
| 12 | 11 | albidv 1870 |
. . . . 5
|
| 13 | tfrcl.ex |
. . . . . . . 8
| |
| 14 | 13 | 3expia 1229 |
. . . . . . 7
|
| 15 | 14 | alrimiv 1920 |
. . . . . 6
|
| 16 | 15 | ralrimiva 2603 |
. . . . 5
|
| 17 | 12, 16, 2 | rspcdva 2912 |
. . . 4
|
| 18 | feq1 5455 |
. . . . . 6
| |
| 19 | fveq2 5626 |
. . . . . . 7
| |
| 20 | 19 | eleq1d 2298 |
. . . . . 6
|
| 21 | 18, 20 | imbi12d 234 |
. . . . 5
|
| 22 | 21 | spv 1906 |
. . . 4
|
| 23 | 17, 1, 22 | sylc 62 |
. . 3
|
| 24 | fsnunf 5838 |
. . 3
| |
| 25 | 1, 3, 9, 23, 24 | syl121anc 1276 |
. 2
|
| 26 | df-suc 4461 |
. . 3
| |
| 27 | 26 | feq2i 5466 |
. 2
|
| 28 | 25, 27 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 |
| This theorem is referenced by: tfrcllemsucaccv 6498 tfrcllembfn 6501 |
| Copyright terms: Public domain | W3C validator |