| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrcllemsucfn | Unicode version | ||
| Description: We can extend an acceptable function by one element to produce a function. Lemma for tfrcl 6473. (Contributed by Jim Kingdon, 24-Mar-2022.) |
| Ref | Expression |
|---|---|
| tfrcl.f |
|
| tfrcl.g |
|
| tfrcl.x |
|
| tfrcl.ex |
|
| tfrcllemsucfn.1 |
|
| tfrcllemsucfn.3 |
|
| tfrcllemsucfn.4 |
|
| tfrcllemsucfn.5 |
|
| Ref | Expression |
|---|---|
| tfrcllemsucfn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrcllemsucfn.4 |
. . 3
| |
| 2 | tfrcllemsucfn.3 |
. . . 4
| |
| 3 | 2 | elexd 2790 |
. . 3
|
| 4 | tfrcl.x |
. . . . 5
| |
| 5 | ordelon 4448 |
. . . . 5
| |
| 6 | 4, 2, 5 | syl2anc 411 |
. . . 4
|
| 7 | eloni 4440 |
. . . 4
| |
| 8 | ordirr 4608 |
. . . 4
| |
| 9 | 6, 7, 8 | 3syl 17 |
. . 3
|
| 10 | feq2 5429 |
. . . . . . 7
| |
| 11 | 10 | imbi1d 231 |
. . . . . 6
|
| 12 | 11 | albidv 1848 |
. . . . 5
|
| 13 | tfrcl.ex |
. . . . . . . 8
| |
| 14 | 13 | 3expia 1208 |
. . . . . . 7
|
| 15 | 14 | alrimiv 1898 |
. . . . . 6
|
| 16 | 15 | ralrimiva 2581 |
. . . . 5
|
| 17 | 12, 16, 2 | rspcdva 2889 |
. . . 4
|
| 18 | feq1 5428 |
. . . . . 6
| |
| 19 | fveq2 5599 |
. . . . . . 7
| |
| 20 | 19 | eleq1d 2276 |
. . . . . 6
|
| 21 | 18, 20 | imbi12d 234 |
. . . . 5
|
| 22 | 21 | spv 1884 |
. . . 4
|
| 23 | 17, 1, 22 | sylc 62 |
. . 3
|
| 24 | fsnunf 5807 |
. . 3
| |
| 25 | 1, 3, 9, 23, 24 | syl121anc 1255 |
. 2
|
| 26 | df-suc 4436 |
. . 3
| |
| 27 | 26 | feq2i 5439 |
. 2
|
| 28 | 25, 27 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 |
| This theorem is referenced by: tfrcllemsucaccv 6463 tfrcllembfn 6466 |
| Copyright terms: Public domain | W3C validator |