| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrcllemsucfn | Unicode version | ||
| Description: We can extend an acceptable function by one element to produce a function. Lemma for tfrcl 6450. (Contributed by Jim Kingdon, 24-Mar-2022.) |
| Ref | Expression |
|---|---|
| tfrcl.f |
|
| tfrcl.g |
|
| tfrcl.x |
|
| tfrcl.ex |
|
| tfrcllemsucfn.1 |
|
| tfrcllemsucfn.3 |
|
| tfrcllemsucfn.4 |
|
| tfrcllemsucfn.5 |
|
| Ref | Expression |
|---|---|
| tfrcllemsucfn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrcllemsucfn.4 |
. . 3
| |
| 2 | tfrcllemsucfn.3 |
. . . 4
| |
| 3 | 2 | elexd 2785 |
. . 3
|
| 4 | tfrcl.x |
. . . . 5
| |
| 5 | ordelon 4430 |
. . . . 5
| |
| 6 | 4, 2, 5 | syl2anc 411 |
. . . 4
|
| 7 | eloni 4422 |
. . . 4
| |
| 8 | ordirr 4590 |
. . . 4
| |
| 9 | 6, 7, 8 | 3syl 17 |
. . 3
|
| 10 | feq2 5409 |
. . . . . . 7
| |
| 11 | 10 | imbi1d 231 |
. . . . . 6
|
| 12 | 11 | albidv 1847 |
. . . . 5
|
| 13 | tfrcl.ex |
. . . . . . . 8
| |
| 14 | 13 | 3expia 1208 |
. . . . . . 7
|
| 15 | 14 | alrimiv 1897 |
. . . . . 6
|
| 16 | 15 | ralrimiva 2579 |
. . . . 5
|
| 17 | 12, 16, 2 | rspcdva 2882 |
. . . 4
|
| 18 | feq1 5408 |
. . . . . 6
| |
| 19 | fveq2 5576 |
. . . . . . 7
| |
| 20 | 19 | eleq1d 2274 |
. . . . . 6
|
| 21 | 18, 20 | imbi12d 234 |
. . . . 5
|
| 22 | 21 | spv 1883 |
. . . 4
|
| 23 | 17, 1, 22 | sylc 62 |
. . 3
|
| 24 | fsnunf 5784 |
. . 3
| |
| 25 | 1, 3, 9, 23, 24 | syl121anc 1255 |
. 2
|
| 26 | df-suc 4418 |
. . 3
| |
| 27 | 26 | feq2i 5419 |
. 2
|
| 28 | 25, 27 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 |
| This theorem is referenced by: tfrcllemsucaccv 6440 tfrcllembfn 6443 |
| Copyright terms: Public domain | W3C validator |