ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemsucfn Unicode version

Theorem tfrcllemsucfn 6439
Description: We can extend an acceptable function by one element to produce a function. Lemma for tfrcl 6450. (Contributed by Jim Kingdon, 24-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f  |-  F  = recs ( G )
tfrcl.g  |-  ( ph  ->  Fun  G )
tfrcl.x  |-  ( ph  ->  Ord  X )
tfrcl.ex  |-  ( (
ph  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S )
tfrcllemsucfn.1  |-  A  =  { f  |  E. x  e.  X  (
f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
tfrcllemsucfn.3  |-  ( ph  ->  z  e.  X )
tfrcllemsucfn.4  |-  ( ph  ->  g : z --> S )
tfrcllemsucfn.5  |-  ( ph  ->  g  e.  A )
Assertion
Ref Expression
tfrcllemsucfn  |-  ( ph  ->  ( g  u.  { <. z ,  ( G `
 g ) >. } ) : suc  z
--> S )
Distinct variable groups:    f, G, x    S, f, x    f, X, x    f, g    ph, f, x    z, f, x
Allowed substitution hints:    ph( y, z, g)    A( x, y, z, f, g)    S( y, z, g)    F( x, y, z, f, g)    G( y, z, g)    X( y, z, g)

Proof of Theorem tfrcllemsucfn
StepHypRef Expression
1 tfrcllemsucfn.4 . . 3  |-  ( ph  ->  g : z --> S )
2 tfrcllemsucfn.3 . . . 4  |-  ( ph  ->  z  e.  X )
32elexd 2785 . . 3  |-  ( ph  ->  z  e.  _V )
4 tfrcl.x . . . . 5  |-  ( ph  ->  Ord  X )
5 ordelon 4430 . . . . 5  |-  ( ( Ord  X  /\  z  e.  X )  ->  z  e.  On )
64, 2, 5syl2anc 411 . . . 4  |-  ( ph  ->  z  e.  On )
7 eloni 4422 . . . 4  |-  ( z  e.  On  ->  Ord  z )
8 ordirr 4590 . . . 4  |-  ( Ord  z  ->  -.  z  e.  z )
96, 7, 83syl 17 . . 3  |-  ( ph  ->  -.  z  e.  z )
10 feq2 5409 . . . . . . 7  |-  ( x  =  z  ->  (
f : x --> S  <->  f :
z --> S ) )
1110imbi1d 231 . . . . . 6  |-  ( x  =  z  ->  (
( f : x --> S  ->  ( G `  f )  e.  S
)  <->  ( f : z --> S  ->  ( G `  f )  e.  S ) ) )
1211albidv 1847 . . . . 5  |-  ( x  =  z  ->  ( A. f ( f : x --> S  ->  ( G `  f )  e.  S )  <->  A. f
( f : z --> S  ->  ( G `  f )  e.  S
) ) )
13 tfrcl.ex . . . . . . . 8  |-  ( (
ph  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S )
14133expia 1208 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  (
f : x --> S  -> 
( G `  f
)  e.  S ) )
1514alrimiv 1897 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A. f
( f : x --> S  ->  ( G `  f )  e.  S
) )
1615ralrimiva 2579 . . . . 5  |-  ( ph  ->  A. x  e.  X  A. f ( f : x --> S  ->  ( G `  f )  e.  S ) )
1712, 16, 2rspcdva 2882 . . . 4  |-  ( ph  ->  A. f ( f : z --> S  -> 
( G `  f
)  e.  S ) )
18 feq1 5408 . . . . . 6  |-  ( f  =  g  ->  (
f : z --> S  <-> 
g : z --> S ) )
19 fveq2 5576 . . . . . . 7  |-  ( f  =  g  ->  ( G `  f )  =  ( G `  g ) )
2019eleq1d 2274 . . . . . 6  |-  ( f  =  g  ->  (
( G `  f
)  e.  S  <->  ( G `  g )  e.  S
) )
2118, 20imbi12d 234 . . . . 5  |-  ( f  =  g  ->  (
( f : z --> S  ->  ( G `  f )  e.  S
)  <->  ( g : z --> S  ->  ( G `  g )  e.  S ) ) )
2221spv 1883 . . . 4  |-  ( A. f ( f : z --> S  ->  ( G `  f )  e.  S )  ->  (
g : z --> S  ->  ( G `  g )  e.  S
) )
2317, 1, 22sylc 62 . . 3  |-  ( ph  ->  ( G `  g
)  e.  S )
24 fsnunf 5784 . . 3  |-  ( ( g : z --> S  /\  ( z  e. 
_V  /\  -.  z  e.  z )  /\  ( G `  g )  e.  S )  ->  (
g  u.  { <. z ,  ( G `  g ) >. } ) : ( z  u. 
{ z } ) --> S )
251, 3, 9, 23, 24syl121anc 1255 . 2  |-  ( ph  ->  ( g  u.  { <. z ,  ( G `
 g ) >. } ) : ( z  u.  { z } ) --> S )
26 df-suc 4418 . . 3  |-  suc  z  =  ( z  u. 
{ z } )
2726feq2i 5419 . 2  |-  ( ( g  u.  { <. z ,  ( G `  g ) >. } ) : suc  z --> S  <-> 
( g  u.  { <. z ,  ( G `
 g ) >. } ) : ( z  u.  { z } ) --> S )
2825, 27sylibr 134 1  |-  ( ph  ->  ( g  u.  { <. z ,  ( G `
 g ) >. } ) : suc  z
--> S )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 981   A.wal 1371    = wceq 1373    e. wcel 2176   {cab 2191   A.wral 2484   E.wrex 2485   _Vcvv 2772    u. cun 3164   {csn 3633   <.cop 3636   Ord word 4409   Oncon0 4410   suc csuc 4412    |` cres 4677   Fun wfun 5265   -->wf 5267   ` cfv 5271  recscrecs 6390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279
This theorem is referenced by:  tfrcllemsucaccv  6440  tfrcllembfn  6443
  Copyright terms: Public domain W3C validator