ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemsucfn Unicode version

Theorem tfrcllemsucfn 6332
Description: We can extend an acceptable function by one element to produce a function. Lemma for tfrcl 6343. (Contributed by Jim Kingdon, 24-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f  |-  F  = recs ( G )
tfrcl.g  |-  ( ph  ->  Fun  G )
tfrcl.x  |-  ( ph  ->  Ord  X )
tfrcl.ex  |-  ( (
ph  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S )
tfrcllemsucfn.1  |-  A  =  { f  |  E. x  e.  X  (
f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
tfrcllemsucfn.3  |-  ( ph  ->  z  e.  X )
tfrcllemsucfn.4  |-  ( ph  ->  g : z --> S )
tfrcllemsucfn.5  |-  ( ph  ->  g  e.  A )
Assertion
Ref Expression
tfrcllemsucfn  |-  ( ph  ->  ( g  u.  { <. z ,  ( G `
 g ) >. } ) : suc  z
--> S )
Distinct variable groups:    f, G, x    S, f, x    f, X, x    f, g    ph, f, x    z, f, x
Allowed substitution hints:    ph( y, z, g)    A( x, y, z, f, g)    S( y, z, g)    F( x, y, z, f, g)    G( y, z, g)    X( y, z, g)

Proof of Theorem tfrcllemsucfn
StepHypRef Expression
1 tfrcllemsucfn.4 . . 3  |-  ( ph  ->  g : z --> S )
2 tfrcllemsucfn.3 . . . 4  |-  ( ph  ->  z  e.  X )
32elexd 2743 . . 3  |-  ( ph  ->  z  e.  _V )
4 tfrcl.x . . . . 5  |-  ( ph  ->  Ord  X )
5 ordelon 4368 . . . . 5  |-  ( ( Ord  X  /\  z  e.  X )  ->  z  e.  On )
64, 2, 5syl2anc 409 . . . 4  |-  ( ph  ->  z  e.  On )
7 eloni 4360 . . . 4  |-  ( z  e.  On  ->  Ord  z )
8 ordirr 4526 . . . 4  |-  ( Ord  z  ->  -.  z  e.  z )
96, 7, 83syl 17 . . 3  |-  ( ph  ->  -.  z  e.  z )
10 feq2 5331 . . . . . . 7  |-  ( x  =  z  ->  (
f : x --> S  <->  f :
z --> S ) )
1110imbi1d 230 . . . . . 6  |-  ( x  =  z  ->  (
( f : x --> S  ->  ( G `  f )  e.  S
)  <->  ( f : z --> S  ->  ( G `  f )  e.  S ) ) )
1211albidv 1817 . . . . 5  |-  ( x  =  z  ->  ( A. f ( f : x --> S  ->  ( G `  f )  e.  S )  <->  A. f
( f : z --> S  ->  ( G `  f )  e.  S
) ) )
13 tfrcl.ex . . . . . . . 8  |-  ( (
ph  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S )
14133expia 1200 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  (
f : x --> S  -> 
( G `  f
)  e.  S ) )
1514alrimiv 1867 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A. f
( f : x --> S  ->  ( G `  f )  e.  S
) )
1615ralrimiva 2543 . . . . 5  |-  ( ph  ->  A. x  e.  X  A. f ( f : x --> S  ->  ( G `  f )  e.  S ) )
1712, 16, 2rspcdva 2839 . . . 4  |-  ( ph  ->  A. f ( f : z --> S  -> 
( G `  f
)  e.  S ) )
18 feq1 5330 . . . . . 6  |-  ( f  =  g  ->  (
f : z --> S  <-> 
g : z --> S ) )
19 fveq2 5496 . . . . . . 7  |-  ( f  =  g  ->  ( G `  f )  =  ( G `  g ) )
2019eleq1d 2239 . . . . . 6  |-  ( f  =  g  ->  (
( G `  f
)  e.  S  <->  ( G `  g )  e.  S
) )
2118, 20imbi12d 233 . . . . 5  |-  ( f  =  g  ->  (
( f : z --> S  ->  ( G `  f )  e.  S
)  <->  ( g : z --> S  ->  ( G `  g )  e.  S ) ) )
2221spv 1853 . . . 4  |-  ( A. f ( f : z --> S  ->  ( G `  f )  e.  S )  ->  (
g : z --> S  ->  ( G `  g )  e.  S
) )
2317, 1, 22sylc 62 . . 3  |-  ( ph  ->  ( G `  g
)  e.  S )
24 fsnunf 5696 . . 3  |-  ( ( g : z --> S  /\  ( z  e. 
_V  /\  -.  z  e.  z )  /\  ( G `  g )  e.  S )  ->  (
g  u.  { <. z ,  ( G `  g ) >. } ) : ( z  u. 
{ z } ) --> S )
251, 3, 9, 23, 24syl121anc 1238 . 2  |-  ( ph  ->  ( g  u.  { <. z ,  ( G `
 g ) >. } ) : ( z  u.  { z } ) --> S )
26 df-suc 4356 . . 3  |-  suc  z  =  ( z  u. 
{ z } )
2726feq2i 5341 . 2  |-  ( ( g  u.  { <. z ,  ( G `  g ) >. } ) : suc  z --> S  <-> 
( g  u.  { <. z ,  ( G `
 g ) >. } ) : ( z  u.  { z } ) --> S )
2825, 27sylibr 133 1  |-  ( ph  ->  ( g  u.  { <. z ,  ( G `
 g ) >. } ) : suc  z
--> S )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    /\ w3a 973   A.wal 1346    = wceq 1348    e. wcel 2141   {cab 2156   A.wral 2448   E.wrex 2449   _Vcvv 2730    u. cun 3119   {csn 3583   <.cop 3586   Ord word 4347   Oncon0 4348   suc csuc 4350    |` cres 4613   Fun wfun 5192   -->wf 5194   ` cfv 5198  recscrecs 6283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206
This theorem is referenced by:  tfrcllemsucaccv  6333  tfrcllembfn  6336
  Copyright terms: Public domain W3C validator