ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0met Unicode version

Theorem 0met 15058
Description: The empty metric. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
0met  |-  (/)  e.  ( Met `  (/) )

Proof of Theorem 0met
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4211 . 2  |-  (/)  e.  _V
2 f0 5516 . . 3  |-  (/) : (/) --> RR
3 xp0 5148 . . . 4  |-  ( (/)  X.  (/) )  =  (/)
43feq2i 5467 . . 3  |-  ( (/) : ( (/)  X.  (/) ) --> RR  <->  (/) :
(/) --> RR )
52, 4mpbir 146 . 2  |-  (/) : (
(/)  X.  (/) ) --> RR
6 noel 3495 . . . 4  |-  -.  x  e.  (/)
76pm2.21i 649 . . 3  |-  ( x  e.  (/)  ->  ( (
x (/) y )  =  0  <->  x  =  y
) )
87adantr 276 . 2  |-  ( ( x  e.  (/)  /\  y  e.  (/) )  ->  (
( x (/) y )  =  0  <->  x  =  y ) )
96pm2.21i 649 . . 3  |-  ( x  e.  (/)  ->  ( x (/) y )  <_  (
( z (/) x )  +  ( z (/) y ) ) )
1093ad2ant1 1042 . 2  |-  ( ( x  e.  (/)  /\  y  e.  (/)  /\  z  e.  (/) )  ->  ( x
(/) y )  <_ 
( ( z (/) x )  +  ( z (/) y ) ) )
111, 5, 8, 10ismeti 15020 1  |-  (/)  e.  ( Met `  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1395    e. wcel 2200   (/)c0 3491   class class class wbr 4083    X. cxp 4717   -->wf 5314   ` cfv 5318  (class class class)co 6001   RRcr 7998   0cc0 7999    + caddc 8002    <_ cle 8182   Metcmet 14501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-met 14509
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator