| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmpox | Unicode version | ||
| Description: Functionality, domain and
codomain of a class given by the maps-to
notation, where |
| Ref | Expression |
|---|---|
| fmpox.1 |
|
| Ref | Expression |
|---|---|
| fmpox |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2775 |
. . . . . . . 8
| |
| 2 | vex 2775 |
. . . . . . . 8
| |
| 3 | 1, 2 | op1std 6234 |
. . . . . . 7
|
| 4 | 3 | csbeq1d 3100 |
. . . . . 6
|
| 5 | 1, 2 | op2ndd 6235 |
. . . . . . . 8
|
| 6 | 5 | csbeq1d 3100 |
. . . . . . 7
|
| 7 | 6 | csbeq2dv 3119 |
. . . . . 6
|
| 8 | 4, 7 | eqtrd 2238 |
. . . . 5
|
| 9 | 8 | eleq1d 2274 |
. . . 4
|
| 10 | 9 | raliunxp 4819 |
. . 3
|
| 11 | nfv 1551 |
. . . . . . 7
| |
| 12 | nfv 1551 |
. . . . . . 7
| |
| 13 | nfv 1551 |
. . . . . . . . 9
| |
| 14 | nfcsb1v 3126 |
. . . . . . . . . 10
| |
| 15 | 14 | nfcri 2342 |
. . . . . . . . 9
|
| 16 | 13, 15 | nfan 1588 |
. . . . . . . 8
|
| 17 | nfcsb1v 3126 |
. . . . . . . . 9
| |
| 18 | 17 | nfeq2 2360 |
. . . . . . . 8
|
| 19 | 16, 18 | nfan 1588 |
. . . . . . 7
|
| 20 | nfv 1551 |
. . . . . . . 8
| |
| 21 | nfcv 2348 |
. . . . . . . . . 10
| |
| 22 | nfcsb1v 3126 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | nfcsb 3131 |
. . . . . . . . 9
|
| 24 | 23 | nfeq2 2360 |
. . . . . . . 8
|
| 25 | 20, 24 | nfan 1588 |
. . . . . . 7
|
| 26 | eleq1 2268 |
. . . . . . . . . 10
| |
| 27 | 26 | adantr 276 |
. . . . . . . . 9
|
| 28 | eleq1 2268 |
. . . . . . . . . 10
| |
| 29 | csbeq1a 3102 |
. . . . . . . . . . 11
| |
| 30 | 29 | eleq2d 2275 |
. . . . . . . . . 10
|
| 31 | 28, 30 | sylan9bbr 463 |
. . . . . . . . 9
|
| 32 | 27, 31 | anbi12d 473 |
. . . . . . . 8
|
| 33 | csbeq1a 3102 |
. . . . . . . . . 10
| |
| 34 | csbeq1a 3102 |
. . . . . . . . . 10
| |
| 35 | 33, 34 | sylan9eqr 2260 |
. . . . . . . . 9
|
| 36 | 35 | eqeq2d 2217 |
. . . . . . . 8
|
| 37 | 32, 36 | anbi12d 473 |
. . . . . . 7
|
| 38 | 11, 12, 19, 25, 37 | cbvoprab12 6019 |
. . . . . 6
|
| 39 | df-mpo 5949 |
. . . . . 6
| |
| 40 | df-mpo 5949 |
. . . . . 6
| |
| 41 | 38, 39, 40 | 3eqtr4i 2236 |
. . . . 5
|
| 42 | fmpox.1 |
. . . . 5
| |
| 43 | 8 | mpomptx 6036 |
. . . . 5
|
| 44 | 41, 42, 43 | 3eqtr4i 2236 |
. . . 4
|
| 45 | 44 | fmpt 5730 |
. . 3
|
| 46 | 10, 45 | bitr3i 186 |
. 2
|
| 47 | nfv 1551 |
. . 3
| |
| 48 | 17 | nfel1 2359 |
. . . 4
|
| 49 | 14, 48 | nfralxy 2544 |
. . 3
|
| 50 | nfv 1551 |
. . . . 5
| |
| 51 | 22 | nfel1 2359 |
. . . . 5
|
| 52 | 33 | eleq1d 2274 |
. . . . 5
|
| 53 | 50, 51, 52 | cbvral 2734 |
. . . 4
|
| 54 | 34 | eleq1d 2274 |
. . . . 5
|
| 55 | 29, 54 | raleqbidv 2718 |
. . . 4
|
| 56 | 53, 55 | bitrid 192 |
. . 3
|
| 57 | 47, 49, 56 | cbvral 2734 |
. 2
|
| 58 | nfcv 2348 |
. . . 4
| |
| 59 | nfcv 2348 |
. . . . 5
| |
| 60 | 59, 14 | nfxp 4702 |
. . . 4
|
| 61 | sneq 3644 |
. . . . 5
| |
| 62 | 61, 29 | xpeq12d 4700 |
. . . 4
|
| 63 | 58, 60, 62 | cbviun 3964 |
. . 3
|
| 64 | 63 | feq2i 5419 |
. 2
|
| 65 | 46, 57, 64 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 |
| This theorem is referenced by: fmpo 6287 |
| Copyright terms: Public domain | W3C validator |