Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fmpox | Unicode version |
Description: Functionality, domain and codomain of a class given by the maps-to notation, where is not constant but depends on . (Contributed by NM, 29-Dec-2014.) |
Ref | Expression |
---|---|
fmpox.1 |
Ref | Expression |
---|---|
fmpox |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . . . . . . 8 | |
2 | vex 2729 | . . . . . . . 8 | |
3 | 1, 2 | op1std 6116 | . . . . . . 7 |
4 | 3 | csbeq1d 3052 | . . . . . 6 |
5 | 1, 2 | op2ndd 6117 | . . . . . . . 8 |
6 | 5 | csbeq1d 3052 | . . . . . . 7 |
7 | 6 | csbeq2dv 3071 | . . . . . 6 |
8 | 4, 7 | eqtrd 2198 | . . . . 5 |
9 | 8 | eleq1d 2235 | . . . 4 |
10 | 9 | raliunxp 4745 | . . 3 |
11 | nfv 1516 | . . . . . . 7 | |
12 | nfv 1516 | . . . . . . 7 | |
13 | nfv 1516 | . . . . . . . . 9 | |
14 | nfcsb1v 3078 | . . . . . . . . . 10 | |
15 | 14 | nfcri 2302 | . . . . . . . . 9 |
16 | 13, 15 | nfan 1553 | . . . . . . . 8 |
17 | nfcsb1v 3078 | . . . . . . . . 9 | |
18 | 17 | nfeq2 2320 | . . . . . . . 8 |
19 | 16, 18 | nfan 1553 | . . . . . . 7 |
20 | nfv 1516 | . . . . . . . 8 | |
21 | nfcv 2308 | . . . . . . . . . 10 | |
22 | nfcsb1v 3078 | . . . . . . . . . 10 | |
23 | 21, 22 | nfcsb 3082 | . . . . . . . . 9 |
24 | 23 | nfeq2 2320 | . . . . . . . 8 |
25 | 20, 24 | nfan 1553 | . . . . . . 7 |
26 | eleq1 2229 | . . . . . . . . . 10 | |
27 | 26 | adantr 274 | . . . . . . . . 9 |
28 | eleq1 2229 | . . . . . . . . . 10 | |
29 | csbeq1a 3054 | . . . . . . . . . . 11 | |
30 | 29 | eleq2d 2236 | . . . . . . . . . 10 |
31 | 28, 30 | sylan9bbr 459 | . . . . . . . . 9 |
32 | 27, 31 | anbi12d 465 | . . . . . . . 8 |
33 | csbeq1a 3054 | . . . . . . . . . 10 | |
34 | csbeq1a 3054 | . . . . . . . . . 10 | |
35 | 33, 34 | sylan9eqr 2221 | . . . . . . . . 9 |
36 | 35 | eqeq2d 2177 | . . . . . . . 8 |
37 | 32, 36 | anbi12d 465 | . . . . . . 7 |
38 | 11, 12, 19, 25, 37 | cbvoprab12 5916 | . . . . . 6 |
39 | df-mpo 5847 | . . . . . 6 | |
40 | df-mpo 5847 | . . . . . 6 | |
41 | 38, 39, 40 | 3eqtr4i 2196 | . . . . 5 |
42 | fmpox.1 | . . . . 5 | |
43 | 8 | mpomptx 5933 | . . . . 5 |
44 | 41, 42, 43 | 3eqtr4i 2196 | . . . 4 |
45 | 44 | fmpt 5635 | . . 3 |
46 | 10, 45 | bitr3i 185 | . 2 |
47 | nfv 1516 | . . 3 | |
48 | 17 | nfel1 2319 | . . . 4 |
49 | 14, 48 | nfralxy 2504 | . . 3 |
50 | nfv 1516 | . . . . 5 | |
51 | 22 | nfel1 2319 | . . . . 5 |
52 | 33 | eleq1d 2235 | . . . . 5 |
53 | 50, 51, 52 | cbvral 2688 | . . . 4 |
54 | 34 | eleq1d 2235 | . . . . 5 |
55 | 29, 54 | raleqbidv 2673 | . . . 4 |
56 | 53, 55 | syl5bb 191 | . . 3 |
57 | 47, 49, 56 | cbvral 2688 | . 2 |
58 | nfcv 2308 | . . . 4 | |
59 | nfcv 2308 | . . . . 5 | |
60 | 59, 14 | nfxp 4631 | . . . 4 |
61 | sneq 3587 | . . . . 5 | |
62 | 61, 29 | xpeq12d 4629 | . . . 4 |
63 | 58, 60, 62 | cbviun 3903 | . . 3 |
64 | 63 | feq2i 5331 | . 2 |
65 | 46, 57, 64 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 csb 3045 csn 3576 cop 3579 ciun 3866 cmpt 4043 cxp 4602 wf 5184 cfv 5188 coprab 5843 cmpo 5844 c1st 6106 c2nd 6107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 |
This theorem is referenced by: fmpo 6169 |
Copyright terms: Public domain | W3C validator |