| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmpox | Unicode version | ||
| Description: Functionality, domain and
codomain of a class given by the maps-to
notation, where |
| Ref | Expression |
|---|---|
| fmpox.1 |
|
| Ref | Expression |
|---|---|
| fmpox |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2779 |
. . . . . . . 8
| |
| 2 | vex 2779 |
. . . . . . . 8
| |
| 3 | 1, 2 | op1std 6257 |
. . . . . . 7
|
| 4 | 3 | csbeq1d 3108 |
. . . . . 6
|
| 5 | 1, 2 | op2ndd 6258 |
. . . . . . . 8
|
| 6 | 5 | csbeq1d 3108 |
. . . . . . 7
|
| 7 | 6 | csbeq2dv 3127 |
. . . . . 6
|
| 8 | 4, 7 | eqtrd 2240 |
. . . . 5
|
| 9 | 8 | eleq1d 2276 |
. . . 4
|
| 10 | 9 | raliunxp 4837 |
. . 3
|
| 11 | nfv 1552 |
. . . . . . 7
| |
| 12 | nfv 1552 |
. . . . . . 7
| |
| 13 | nfv 1552 |
. . . . . . . . 9
| |
| 14 | nfcsb1v 3134 |
. . . . . . . . . 10
| |
| 15 | 14 | nfcri 2344 |
. . . . . . . . 9
|
| 16 | 13, 15 | nfan 1589 |
. . . . . . . 8
|
| 17 | nfcsb1v 3134 |
. . . . . . . . 9
| |
| 18 | 17 | nfeq2 2362 |
. . . . . . . 8
|
| 19 | 16, 18 | nfan 1589 |
. . . . . . 7
|
| 20 | nfv 1552 |
. . . . . . . 8
| |
| 21 | nfcv 2350 |
. . . . . . . . . 10
| |
| 22 | nfcsb1v 3134 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | nfcsb 3139 |
. . . . . . . . 9
|
| 24 | 23 | nfeq2 2362 |
. . . . . . . 8
|
| 25 | 20, 24 | nfan 1589 |
. . . . . . 7
|
| 26 | eleq1 2270 |
. . . . . . . . . 10
| |
| 27 | 26 | adantr 276 |
. . . . . . . . 9
|
| 28 | eleq1 2270 |
. . . . . . . . . 10
| |
| 29 | csbeq1a 3110 |
. . . . . . . . . . 11
| |
| 30 | 29 | eleq2d 2277 |
. . . . . . . . . 10
|
| 31 | 28, 30 | sylan9bbr 463 |
. . . . . . . . 9
|
| 32 | 27, 31 | anbi12d 473 |
. . . . . . . 8
|
| 33 | csbeq1a 3110 |
. . . . . . . . . 10
| |
| 34 | csbeq1a 3110 |
. . . . . . . . . 10
| |
| 35 | 33, 34 | sylan9eqr 2262 |
. . . . . . . . 9
|
| 36 | 35 | eqeq2d 2219 |
. . . . . . . 8
|
| 37 | 32, 36 | anbi12d 473 |
. . . . . . 7
|
| 38 | 11, 12, 19, 25, 37 | cbvoprab12 6042 |
. . . . . 6
|
| 39 | df-mpo 5972 |
. . . . . 6
| |
| 40 | df-mpo 5972 |
. . . . . 6
| |
| 41 | 38, 39, 40 | 3eqtr4i 2238 |
. . . . 5
|
| 42 | fmpox.1 |
. . . . 5
| |
| 43 | 8 | mpomptx 6059 |
. . . . 5
|
| 44 | 41, 42, 43 | 3eqtr4i 2238 |
. . . 4
|
| 45 | 44 | fmpt 5753 |
. . 3
|
| 46 | 10, 45 | bitr3i 186 |
. 2
|
| 47 | nfv 1552 |
. . 3
| |
| 48 | 17 | nfel1 2361 |
. . . 4
|
| 49 | 14, 48 | nfralxy 2546 |
. . 3
|
| 50 | nfv 1552 |
. . . . 5
| |
| 51 | 22 | nfel1 2361 |
. . . . 5
|
| 52 | 33 | eleq1d 2276 |
. . . . 5
|
| 53 | 50, 51, 52 | cbvral 2738 |
. . . 4
|
| 54 | 34 | eleq1d 2276 |
. . . . 5
|
| 55 | 29, 54 | raleqbidv 2721 |
. . . 4
|
| 56 | 53, 55 | bitrid 192 |
. . 3
|
| 57 | 47, 49, 56 | cbvral 2738 |
. 2
|
| 58 | nfcv 2350 |
. . . 4
| |
| 59 | nfcv 2350 |
. . . . 5
| |
| 60 | 59, 14 | nfxp 4720 |
. . . 4
|
| 61 | sneq 3654 |
. . . . 5
| |
| 62 | 61, 29 | xpeq12d 4718 |
. . . 4
|
| 63 | 58, 60, 62 | cbviun 3978 |
. . 3
|
| 64 | 63 | feq2i 5439 |
. 2
|
| 65 | 46, 57, 64 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 |
| This theorem is referenced by: fmpo 6310 |
| Copyright terms: Public domain | W3C validator |