ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmpox Unicode version

Theorem fmpox 6195
Description: Functionality, domain and codomain of a class given by the maps-to notation, where  B ( x ) is not constant but depends on  x. (Contributed by NM, 29-Dec-2014.)
Hypothesis
Ref Expression
fmpox.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
fmpox  |-  ( A. x  e.  A  A. y  e.  B  C  e.  D  <->  F : U_ x  e.  A  ( {
x }  X.  B
) --> D )
Distinct variable groups:    x, y, A   
y, B    x, D, y
Allowed substitution hints:    B( x)    C( x, y)    F( x, y)

Proof of Theorem fmpox
Dummy variables  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2740 . . . . . . . 8  |-  z  e. 
_V
2 vex 2740 . . . . . . . 8  |-  w  e. 
_V
31, 2op1std 6143 . . . . . . 7  |-  ( v  =  <. z ,  w >.  ->  ( 1st `  v
)  =  z )
43csbeq1d 3064 . . . . . 6  |-  ( v  =  <. z ,  w >.  ->  [_ ( 1st `  v
)  /  x ]_ [_ ( 2nd `  v
)  /  y ]_ C  =  [_ z  /  x ]_ [_ ( 2nd `  v )  /  y ]_ C )
51, 2op2ndd 6144 . . . . . . . 8  |-  ( v  =  <. z ,  w >.  ->  ( 2nd `  v
)  =  w )
65csbeq1d 3064 . . . . . . 7  |-  ( v  =  <. z ,  w >.  ->  [_ ( 2nd `  v
)  /  y ]_ C  =  [_ w  / 
y ]_ C )
76csbeq2dv 3083 . . . . . 6  |-  ( v  =  <. z ,  w >.  ->  [_ z  /  x ]_ [_ ( 2nd `  v
)  /  y ]_ C  =  [_ z  /  x ]_ [_ w  / 
y ]_ C )
84, 7eqtrd 2210 . . . . 5  |-  ( v  =  <. z ,  w >.  ->  [_ ( 1st `  v
)  /  x ]_ [_ ( 2nd `  v
)  /  y ]_ C  =  [_ z  /  x ]_ [_ w  / 
y ]_ C )
98eleq1d 2246 . . . 4  |-  ( v  =  <. z ,  w >.  ->  ( [_ ( 1st `  v )  /  x ]_ [_ ( 2nd `  v )  /  y ]_ C  e.  D  <->  [_ z  /  x ]_ [_ w  /  y ]_ C  e.  D )
)
109raliunxp 4764 . . 3  |-  ( A. v  e.  U_  z  e.  A  ( { z }  X.  [_ z  /  x ]_ B )
[_ ( 1st `  v
)  /  x ]_ [_ ( 2nd `  v
)  /  y ]_ C  e.  D  <->  A. z  e.  A  A. w  e.  [_  z  /  x ]_ B [_ z  /  x ]_ [_ w  / 
y ]_ C  e.  D
)
11 nfv 1528 . . . . . . 7  |-  F/ z ( ( x  e.  A  /\  y  e.  B )  /\  v  =  C )
12 nfv 1528 . . . . . . 7  |-  F/ w
( ( x  e.  A  /\  y  e.  B )  /\  v  =  C )
13 nfv 1528 . . . . . . . . 9  |-  F/ x  z  e.  A
14 nfcsb1v 3090 . . . . . . . . . 10  |-  F/_ x [_ z  /  x ]_ B
1514nfcri 2313 . . . . . . . . 9  |-  F/ x  w  e.  [_ z  /  x ]_ B
1613, 15nfan 1565 . . . . . . . 8  |-  F/ x
( z  e.  A  /\  w  e.  [_ z  /  x ]_ B )
17 nfcsb1v 3090 . . . . . . . . 9  |-  F/_ x [_ z  /  x ]_ [_ w  /  y ]_ C
1817nfeq2 2331 . . . . . . . 8  |-  F/ x  v  =  [_ z  /  x ]_ [_ w  / 
y ]_ C
1916, 18nfan 1565 . . . . . . 7  |-  F/ x
( ( z  e.  A  /\  w  e. 
[_ z  /  x ]_ B )  /\  v  =  [_ z  /  x ]_ [_ w  /  y ]_ C )
20 nfv 1528 . . . . . . . 8  |-  F/ y ( z  e.  A  /\  w  e.  [_ z  /  x ]_ B )
21 nfcv 2319 . . . . . . . . . 10  |-  F/_ y
z
22 nfcsb1v 3090 . . . . . . . . . 10  |-  F/_ y [_ w  /  y ]_ C
2321, 22nfcsb 3094 . . . . . . . . 9  |-  F/_ y [_ z  /  x ]_ [_ w  /  y ]_ C
2423nfeq2 2331 . . . . . . . 8  |-  F/ y  v  =  [_ z  /  x ]_ [_ w  /  y ]_ C
2520, 24nfan 1565 . . . . . . 7  |-  F/ y ( ( z  e.  A  /\  w  e. 
[_ z  /  x ]_ B )  /\  v  =  [_ z  /  x ]_ [_ w  /  y ]_ C )
26 eleq1 2240 . . . . . . . . . 10  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
2726adantr 276 . . . . . . . . 9  |-  ( ( x  =  z  /\  y  =  w )  ->  ( x  e.  A  <->  z  e.  A ) )
28 eleq1 2240 . . . . . . . . . 10  |-  ( y  =  w  ->  (
y  e.  B  <->  w  e.  B ) )
29 csbeq1a 3066 . . . . . . . . . . 11  |-  ( x  =  z  ->  B  =  [_ z  /  x ]_ B )
3029eleq2d 2247 . . . . . . . . . 10  |-  ( x  =  z  ->  (
w  e.  B  <->  w  e.  [_ z  /  x ]_ B ) )
3128, 30sylan9bbr 463 . . . . . . . . 9  |-  ( ( x  =  z  /\  y  =  w )  ->  ( y  e.  B  <->  w  e.  [_ z  /  x ]_ B ) )
3227, 31anbi12d 473 . . . . . . . 8  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ( x  e.  A  /\  y  e.  B )  <->  ( z  e.  A  /\  w  e.  [_ z  /  x ]_ B ) ) )
33 csbeq1a 3066 . . . . . . . . . 10  |-  ( y  =  w  ->  C  =  [_ w  /  y ]_ C )
34 csbeq1a 3066 . . . . . . . . . 10  |-  ( x  =  z  ->  [_ w  /  y ]_ C  =  [_ z  /  x ]_ [_ w  /  y ]_ C )
3533, 34sylan9eqr 2232 . . . . . . . . 9  |-  ( ( x  =  z  /\  y  =  w )  ->  C  =  [_ z  /  x ]_ [_ w  /  y ]_ C
)
3635eqeq2d 2189 . . . . . . . 8  |-  ( ( x  =  z  /\  y  =  w )  ->  ( v  =  C  <-> 
v  =  [_ z  /  x ]_ [_ w  /  y ]_ C
) )
3732, 36anbi12d 473 . . . . . . 7  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ( ( x  e.  A  /\  y  e.  B )  /\  v  =  C )  <->  ( (
z  e.  A  /\  w  e.  [_ z  /  x ]_ B )  /\  v  =  [_ z  /  x ]_ [_ w  / 
y ]_ C ) ) )
3811, 12, 19, 25, 37cbvoprab12 5943 . . . . . 6  |-  { <. <.
x ,  y >. ,  v >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  v  =  C ) }  =  { <. <. z ,  w >. ,  v >.  |  ( ( z  e.  A  /\  w  e.  [_ z  /  x ]_ B )  /\  v  =  [_ z  /  x ]_ [_ w  /  y ]_ C
) }
39 df-mpo 5874 . . . . . 6  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  v
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  v  =  C
) }
40 df-mpo 5874 . . . . . 6  |-  ( z  e.  A ,  w  e.  [_ z  /  x ]_ B  |->  [_ z  /  x ]_ [_ w  /  y ]_ C
)  =  { <. <.
z ,  w >. ,  v >.  |  (
( z  e.  A  /\  w  e.  [_ z  /  x ]_ B )  /\  v  =  [_ z  /  x ]_ [_ w  /  y ]_ C
) }
4138, 39, 403eqtr4i 2208 . . . . 5  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e.  A ,  w  e. 
[_ z  /  x ]_ B  |->  [_ z  /  x ]_ [_ w  /  y ]_ C
)
42 fmpox.1 . . . . 5  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
438mpomptx 5960 . . . . 5  |-  ( v  e.  U_ z  e.  A  ( { z }  X.  [_ z  /  x ]_ B ) 
|->  [_ ( 1st `  v
)  /  x ]_ [_ ( 2nd `  v
)  /  y ]_ C )  =  ( z  e.  A ,  w  e.  [_ z  /  x ]_ B  |->  [_ z  /  x ]_ [_ w  /  y ]_ C
)
4441, 42, 433eqtr4i 2208 . . . 4  |-  F  =  ( v  e.  U_ z  e.  A  ( { z }  X.  [_ z  /  x ]_ B )  |->  [_ ( 1st `  v )  /  x ]_ [_ ( 2nd `  v )  /  y ]_ C )
4544fmpt 5662 . . 3  |-  ( A. v  e.  U_  z  e.  A  ( { z }  X.  [_ z  /  x ]_ B )
[_ ( 1st `  v
)  /  x ]_ [_ ( 2nd `  v
)  /  y ]_ C  e.  D  <->  F : U_ z  e.  A  ( { z }  X.  [_ z  /  x ]_ B ) --> D )
4610, 45bitr3i 186 . 2  |-  ( A. z  e.  A  A. w  e.  [_  z  /  x ]_ B [_ z  /  x ]_ [_ w  /  y ]_ C  e.  D  <->  F : U_ z  e.  A  ( {
z }  X.  [_ z  /  x ]_ B
) --> D )
47 nfv 1528 . . 3  |-  F/ z A. y  e.  B  C  e.  D
4817nfel1 2330 . . . 4  |-  F/ x [_ z  /  x ]_ [_ w  /  y ]_ C  e.  D
4914, 48nfralxy 2515 . . 3  |-  F/ x A. w  e.  [_  z  /  x ]_ B [_ z  /  x ]_ [_ w  /  y ]_ C  e.  D
50 nfv 1528 . . . . 5  |-  F/ w  C  e.  D
5122nfel1 2330 . . . . 5  |-  F/ y
[_ w  /  y ]_ C  e.  D
5233eleq1d 2246 . . . . 5  |-  ( y  =  w  ->  ( C  e.  D  <->  [_ w  / 
y ]_ C  e.  D
) )
5350, 51, 52cbvral 2699 . . . 4  |-  ( A. y  e.  B  C  e.  D  <->  A. w  e.  B  [_ w  /  y ]_ C  e.  D )
5434eleq1d 2246 . . . . 5  |-  ( x  =  z  ->  ( [_ w  /  y ]_ C  e.  D  <->  [_ z  /  x ]_ [_ w  /  y ]_ C  e.  D )
)
5529, 54raleqbidv 2684 . . . 4  |-  ( x  =  z  ->  ( A. w  e.  B  [_ w  /  y ]_ C  e.  D  <->  A. w  e.  [_  z  /  x ]_ B [_ z  /  x ]_ [_ w  / 
y ]_ C  e.  D
) )
5653, 55bitrid 192 . . 3  |-  ( x  =  z  ->  ( A. y  e.  B  C  e.  D  <->  A. w  e.  [_  z  /  x ]_ B [_ z  /  x ]_ [_ w  / 
y ]_ C  e.  D
) )
5747, 49, 56cbvral 2699 . 2  |-  ( A. x  e.  A  A. y  e.  B  C  e.  D  <->  A. z  e.  A  A. w  e.  [_  z  /  x ]_ B [_ z  /  x ]_ [_ w  /  y ]_ C  e.  D )
58 nfcv 2319 . . . 4  |-  F/_ z
( { x }  X.  B )
59 nfcv 2319 . . . . 5  |-  F/_ x { z }
6059, 14nfxp 4650 . . . 4  |-  F/_ x
( { z }  X.  [_ z  /  x ]_ B )
61 sneq 3602 . . . . 5  |-  ( x  =  z  ->  { x }  =  { z } )
6261, 29xpeq12d 4648 . . . 4  |-  ( x  =  z  ->  ( { x }  X.  B )  =  ( { z }  X.  [_ z  /  x ]_ B ) )
6358, 60, 62cbviun 3921 . . 3  |-  U_ x  e.  A  ( {
x }  X.  B
)  =  U_ z  e.  A  ( {
z }  X.  [_ z  /  x ]_ B
)
6463feq2i 5355 . 2  |-  ( F : U_ x  e.  A  ( { x }  X.  B ) --> D  <-> 
F : U_ z  e.  A  ( {
z }  X.  [_ z  /  x ]_ B
) --> D )
6546, 57, 643bitr4i 212 1  |-  ( A. x  e.  A  A. y  e.  B  C  e.  D  <->  F : U_ x  e.  A  ( {
x }  X.  B
) --> D )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   [_csb 3057   {csn 3591   <.cop 3594   U_ciun 3884    |-> cmpt 4061    X. cxp 4621   -->wf 5208   ` cfv 5212   {coprab 5870    e. cmpo 5871   1stc1st 6133   2ndc2nd 6134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136
This theorem is referenced by:  fmpo  6196
  Copyright terms: Public domain W3C validator