| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmpox | Unicode version | ||
| Description: Functionality, domain and
codomain of a class given by the maps-to
notation, where |
| Ref | Expression |
|---|---|
| fmpox.1 |
|
| Ref | Expression |
|---|---|
| fmpox |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 |
. . . . . . . 8
| |
| 2 | vex 2802 |
. . . . . . . 8
| |
| 3 | 1, 2 | op1std 6292 |
. . . . . . 7
|
| 4 | 3 | csbeq1d 3131 |
. . . . . 6
|
| 5 | 1, 2 | op2ndd 6293 |
. . . . . . . 8
|
| 6 | 5 | csbeq1d 3131 |
. . . . . . 7
|
| 7 | 6 | csbeq2dv 3150 |
. . . . . 6
|
| 8 | 4, 7 | eqtrd 2262 |
. . . . 5
|
| 9 | 8 | eleq1d 2298 |
. . . 4
|
| 10 | 9 | raliunxp 4862 |
. . 3
|
| 11 | nfv 1574 |
. . . . . . 7
| |
| 12 | nfv 1574 |
. . . . . . 7
| |
| 13 | nfv 1574 |
. . . . . . . . 9
| |
| 14 | nfcsb1v 3157 |
. . . . . . . . . 10
| |
| 15 | 14 | nfcri 2366 |
. . . . . . . . 9
|
| 16 | 13, 15 | nfan 1611 |
. . . . . . . 8
|
| 17 | nfcsb1v 3157 |
. . . . . . . . 9
| |
| 18 | 17 | nfeq2 2384 |
. . . . . . . 8
|
| 19 | 16, 18 | nfan 1611 |
. . . . . . 7
|
| 20 | nfv 1574 |
. . . . . . . 8
| |
| 21 | nfcv 2372 |
. . . . . . . . . 10
| |
| 22 | nfcsb1v 3157 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | nfcsb 3162 |
. . . . . . . . 9
|
| 24 | 23 | nfeq2 2384 |
. . . . . . . 8
|
| 25 | 20, 24 | nfan 1611 |
. . . . . . 7
|
| 26 | eleq1 2292 |
. . . . . . . . . 10
| |
| 27 | 26 | adantr 276 |
. . . . . . . . 9
|
| 28 | eleq1 2292 |
. . . . . . . . . 10
| |
| 29 | csbeq1a 3133 |
. . . . . . . . . . 11
| |
| 30 | 29 | eleq2d 2299 |
. . . . . . . . . 10
|
| 31 | 28, 30 | sylan9bbr 463 |
. . . . . . . . 9
|
| 32 | 27, 31 | anbi12d 473 |
. . . . . . . 8
|
| 33 | csbeq1a 3133 |
. . . . . . . . . 10
| |
| 34 | csbeq1a 3133 |
. . . . . . . . . 10
| |
| 35 | 33, 34 | sylan9eqr 2284 |
. . . . . . . . 9
|
| 36 | 35 | eqeq2d 2241 |
. . . . . . . 8
|
| 37 | 32, 36 | anbi12d 473 |
. . . . . . 7
|
| 38 | 11, 12, 19, 25, 37 | cbvoprab12 6077 |
. . . . . 6
|
| 39 | df-mpo 6005 |
. . . . . 6
| |
| 40 | df-mpo 6005 |
. . . . . 6
| |
| 41 | 38, 39, 40 | 3eqtr4i 2260 |
. . . . 5
|
| 42 | fmpox.1 |
. . . . 5
| |
| 43 | 8 | mpomptx 6094 |
. . . . 5
|
| 44 | 41, 42, 43 | 3eqtr4i 2260 |
. . . 4
|
| 45 | 44 | fmpt 5784 |
. . 3
|
| 46 | 10, 45 | bitr3i 186 |
. 2
|
| 47 | nfv 1574 |
. . 3
| |
| 48 | 17 | nfel1 2383 |
. . . 4
|
| 49 | 14, 48 | nfralxy 2568 |
. . 3
|
| 50 | nfv 1574 |
. . . . 5
| |
| 51 | 22 | nfel1 2383 |
. . . . 5
|
| 52 | 33 | eleq1d 2298 |
. . . . 5
|
| 53 | 50, 51, 52 | cbvral 2761 |
. . . 4
|
| 54 | 34 | eleq1d 2298 |
. . . . 5
|
| 55 | 29, 54 | raleqbidv 2744 |
. . . 4
|
| 56 | 53, 55 | bitrid 192 |
. . 3
|
| 57 | 47, 49, 56 | cbvral 2761 |
. 2
|
| 58 | nfcv 2372 |
. . . 4
| |
| 59 | nfcv 2372 |
. . . . 5
| |
| 60 | 59, 14 | nfxp 4745 |
. . . 4
|
| 61 | sneq 3677 |
. . . . 5
| |
| 62 | 61, 29 | xpeq12d 4743 |
. . . 4
|
| 63 | 58, 60, 62 | cbviun 4001 |
. . 3
|
| 64 | 63 | feq2i 5466 |
. 2
|
| 65 | 46, 57, 64 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 |
| This theorem is referenced by: fmpo 6345 |
| Copyright terms: Public domain | W3C validator |