| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq2i | GIF version | ||
| Description: Equality inference for functions. (Contributed by NM, 5-Sep-2011.) |
| Ref | Expression |
|---|---|
| feq2i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| feq2i | ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | feq2 5391 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 ⟶wf 5254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-fn 5261 df-f 5262 |
| This theorem is referenced by: fmpox 6258 fmpo 6259 tposf 6330 issmo 6346 tfrcllemsucfn 6411 1fv 10214 fxnn0nninf 10531 snopiswrd 10945 iswrddm0 10959 0met 14620 dvef 14963 |
| Copyright terms: Public domain | W3C validator |