ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq2i GIF version

Theorem feq2i 5401
Description: Equality inference for functions. (Contributed by NM, 5-Sep-2011.)
Hypothesis
Ref Expression
feq2i.1 𝐴 = 𝐵
Assertion
Ref Expression
feq2i (𝐹:𝐴𝐶𝐹:𝐵𝐶)

Proof of Theorem feq2i
StepHypRef Expression
1 feq2i.1 . 2 𝐴 = 𝐵
2 feq2 5391 . 2 (𝐴 = 𝐵 → (𝐹:𝐴𝐶𝐹:𝐵𝐶))
31, 2ax-mp 5 1 (𝐹:𝐴𝐶𝐹:𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  wf 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-fn 5261  df-f 5262
This theorem is referenced by:  fmpox  6258  fmpo  6259  tposf  6330  issmo  6346  tfrcllemsucfn  6411  1fv  10214  fxnn0nninf  10531  snopiswrd  10945  iswrddm0  10959  0met  14620  dvef  14963
  Copyright terms: Public domain W3C validator