Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > feq2i | GIF version |
Description: Equality inference for functions. (Contributed by NM, 5-Sep-2011.) |
Ref | Expression |
---|---|
feq2i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
feq2i | ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | feq2 5321 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 ⟶wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-fn 5191 df-f 5192 |
This theorem is referenced by: fmpox 6168 fmpo 6169 tposf 6240 issmo 6256 tfrcllemsucfn 6321 1fv 10074 fxnn0nninf 10373 0met 13034 dvef 13338 |
Copyright terms: Public domain | W3C validator |