ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1fv Unicode version

Theorem 1fv 10205
Description: A function on a singleton. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
Assertion
Ref Expression
1fv  |-  ( ( N  e.  V  /\  P  =  { <. 0 ,  N >. } )  -> 
( P : ( 0 ... 0 ) --> V  /\  ( P `
 0 )  =  N ) )

Proof of Theorem 1fv
StepHypRef Expression
1 0z 9328 . . . . . 6  |-  0  e.  ZZ
2 f1osng 5541 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  N  e.  V )  ->  { <. 0 ,  N >. } : { 0 } -1-1-onto-> { N } )
31, 2mpan 424 . . . . 5  |-  ( N  e.  V  ->  { <. 0 ,  N >. } : { 0 } -1-1-onto-> { N } )
4 f1ofo 5507 . . . . . 6  |-  ( {
<. 0 ,  N >. } : { 0 } -1-1-onto-> { N }  ->  {
<. 0 ,  N >. } : { 0 } -onto-> { N } )
5 dffo2 5480 . . . . . . 7  |-  ( {
<. 0 ,  N >. } : { 0 } -onto-> { N }  <->  ( { <. 0 ,  N >. } : { 0 } --> { N }  /\  ran  { <. 0 ,  N >. }  =  { N } ) )
65biimpi 120 . . . . . 6  |-  ( {
<. 0 ,  N >. } : { 0 } -onto-> { N }  ->  ( { <. 0 ,  N >. } : { 0 } --> { N }  /\  ran  { <. 0 ,  N >. }  =  { N } ) )
7 fzsn 10132 . . . . . . . . . . . . 13  |-  ( 0  e.  ZZ  ->  (
0 ... 0 )  =  { 0 } )
81, 7ax-mp 5 . . . . . . . . . . . 12  |-  ( 0 ... 0 )  =  { 0 }
98eqcomi 2197 . . . . . . . . . . 11  |-  { 0 }  =  ( 0 ... 0 )
109feq2i 5397 . . . . . . . . . 10  |-  ( {
<. 0 ,  N >. } : { 0 } --> { N }  <->  {
<. 0 ,  N >. } : ( 0 ... 0 ) --> { N } )
1110biimpi 120 . . . . . . . . 9  |-  ( {
<. 0 ,  N >. } : { 0 } --> { N }  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> { N } )
12 snssi 3762 . . . . . . . . 9  |-  ( N  e.  V  ->  { N }  C_  V )
13 fss 5415 . . . . . . . . 9  |-  ( ( { <. 0 ,  N >. } : ( 0 ... 0 ) --> { N }  /\  { N }  C_  V )  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V )
1411, 12, 13syl2an 289 . . . . . . . 8  |-  ( ( { <. 0 ,  N >. } : { 0 } --> { N }  /\  N  e.  V
)  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V )
1514ex 115 . . . . . . 7  |-  ( {
<. 0 ,  N >. } : { 0 } --> { N }  ->  ( N  e.  V  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V ) )
1615adantr 276 . . . . . 6  |-  ( ( { <. 0 ,  N >. } : { 0 } --> { N }  /\  ran  { <. 0 ,  N >. }  =  { N } )  ->  ( N  e.  V  ->  {
<. 0 ,  N >. } : ( 0 ... 0 ) --> V ) )
174, 6, 163syl 17 . . . . 5  |-  ( {
<. 0 ,  N >. } : { 0 } -1-1-onto-> { N }  ->  ( N  e.  V  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V ) )
183, 17mpcom 36 . . . 4  |-  ( N  e.  V  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V )
19 fvsng 5754 . . . . 5  |-  ( ( 0  e.  ZZ  /\  N  e.  V )  ->  ( { <. 0 ,  N >. } `  0
)  =  N )
201, 19mpan 424 . . . 4  |-  ( N  e.  V  ->  ( { <. 0 ,  N >. } `  0 )  =  N )
2118, 20jca 306 . . 3  |-  ( N  e.  V  ->  ( { <. 0 ,  N >. } : ( 0 ... 0 ) --> V  /\  ( { <. 0 ,  N >. } `
 0 )  =  N ) )
2221adantr 276 . 2  |-  ( ( N  e.  V  /\  P  =  { <. 0 ,  N >. } )  -> 
( { <. 0 ,  N >. } : ( 0 ... 0 ) --> V  /\  ( {
<. 0 ,  N >. } `  0 )  =  N ) )
23 feq1 5386 . . . 4  |-  ( P  =  { <. 0 ,  N >. }  ->  ( P : ( 0 ... 0 ) --> V  <->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V ) )
24 fveq1 5553 . . . . 5  |-  ( P  =  { <. 0 ,  N >. }  ->  ( P `  0 )  =  ( { <. 0 ,  N >. } `
 0 ) )
2524eqeq1d 2202 . . . 4  |-  ( P  =  { <. 0 ,  N >. }  ->  (
( P `  0
)  =  N  <->  ( { <. 0 ,  N >. } `
 0 )  =  N ) )
2623, 25anbi12d 473 . . 3  |-  ( P  =  { <. 0 ,  N >. }  ->  (
( P : ( 0 ... 0 ) --> V  /\  ( P `
 0 )  =  N )  <->  ( { <. 0 ,  N >. } : ( 0 ... 0 ) --> V  /\  ( { <. 0 ,  N >. } `  0 )  =  N ) ) )
2726adantl 277 . 2  |-  ( ( N  e.  V  /\  P  =  { <. 0 ,  N >. } )  -> 
( ( P :
( 0 ... 0
) --> V  /\  ( P `  0 )  =  N )  <->  ( { <. 0 ,  N >. } : ( 0 ... 0 ) --> V  /\  ( { <. 0 ,  N >. } `  0 )  =  N ) ) )
2822, 27mpbird 167 1  |-  ( ( N  e.  V  /\  P  =  { <. 0 ,  N >. } )  -> 
( P : ( 0 ... 0 ) --> V  /\  ( P `
 0 )  =  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    C_ wss 3153   {csn 3618   <.cop 3621   ran crn 4660   -->wf 5250   -onto->wfo 5252   -1-1-onto->wf1o 5253   ` cfv 5254  (class class class)co 5918   0cc0 7872   ZZcz 9317   ...cfz 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-apti 7987
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-neg 8193  df-z 9318  df-uz 9593  df-fz 10075
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator