Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1fv | Unicode version |
Description: A function on a singleton. (Contributed by Alexander van der Vekens, 3-Dec-2017.) |
Ref | Expression |
---|---|
1fv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 9202 | . . . . . 6 | |
2 | f1osng 5473 | . . . . . 6 | |
3 | 1, 2 | mpan 421 | . . . . 5 |
4 | f1ofo 5439 | . . . . . 6 | |
5 | dffo2 5414 | . . . . . . 7 | |
6 | 5 | biimpi 119 | . . . . . 6 |
7 | fzsn 10001 | . . . . . . . . . . . . 13 | |
8 | 1, 7 | ax-mp 5 | . . . . . . . . . . . 12 |
9 | 8 | eqcomi 2169 | . . . . . . . . . . 11 |
10 | 9 | feq2i 5331 | . . . . . . . . . 10 |
11 | 10 | biimpi 119 | . . . . . . . . 9 |
12 | snssi 3717 | . . . . . . . . 9 | |
13 | fss 5349 | . . . . . . . . 9 | |
14 | 11, 12, 13 | syl2an 287 | . . . . . . . 8 |
15 | 14 | ex 114 | . . . . . . 7 |
16 | 15 | adantr 274 | . . . . . 6 |
17 | 4, 6, 16 | 3syl 17 | . . . . 5 |
18 | 3, 17 | mpcom 36 | . . . 4 |
19 | fvsng 5681 | . . . . 5 | |
20 | 1, 19 | mpan 421 | . . . 4 |
21 | 18, 20 | jca 304 | . . 3 |
22 | 21 | adantr 274 | . 2 |
23 | feq1 5320 | . . . 4 | |
24 | fveq1 5485 | . . . . 5 | |
25 | 24 | eqeq1d 2174 | . . . 4 |
26 | 23, 25 | anbi12d 465 | . . 3 |
27 | 26 | adantl 275 | . 2 |
28 | 22, 27 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wss 3116 csn 3576 cop 3579 crn 4605 wf 5184 wfo 5186 wf1o 5187 cfv 5188 (class class class)co 5842 cc0 7753 cz 9191 cfz 9944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-rnegex 7862 ax-pre-ltirr 7865 ax-pre-apti 7868 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-neg 8072 df-z 9192 df-uz 9467 df-fz 9945 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |