ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1fv Unicode version

Theorem 1fv 10335
Description: A function on a singleton. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
Assertion
Ref Expression
1fv  |-  ( ( N  e.  V  /\  P  =  { <. 0 ,  N >. } )  -> 
( P : ( 0 ... 0 ) --> V  /\  ( P `
 0 )  =  N ) )

Proof of Theorem 1fv
StepHypRef Expression
1 0z 9457 . . . . . 6  |-  0  e.  ZZ
2 f1osng 5614 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  N  e.  V )  ->  { <. 0 ,  N >. } : { 0 } -1-1-onto-> { N } )
31, 2mpan 424 . . . . 5  |-  ( N  e.  V  ->  { <. 0 ,  N >. } : { 0 } -1-1-onto-> { N } )
4 f1ofo 5579 . . . . . 6  |-  ( {
<. 0 ,  N >. } : { 0 } -1-1-onto-> { N }  ->  {
<. 0 ,  N >. } : { 0 } -onto-> { N } )
5 dffo2 5552 . . . . . . 7  |-  ( {
<. 0 ,  N >. } : { 0 } -onto-> { N }  <->  ( { <. 0 ,  N >. } : { 0 } --> { N }  /\  ran  { <. 0 ,  N >. }  =  { N } ) )
65biimpi 120 . . . . . 6  |-  ( {
<. 0 ,  N >. } : { 0 } -onto-> { N }  ->  ( { <. 0 ,  N >. } : { 0 } --> { N }  /\  ran  { <. 0 ,  N >. }  =  { N } ) )
7 fzsn 10262 . . . . . . . . . . . . 13  |-  ( 0  e.  ZZ  ->  (
0 ... 0 )  =  { 0 } )
81, 7ax-mp 5 . . . . . . . . . . . 12  |-  ( 0 ... 0 )  =  { 0 }
98eqcomi 2233 . . . . . . . . . . 11  |-  { 0 }  =  ( 0 ... 0 )
109feq2i 5467 . . . . . . . . . 10  |-  ( {
<. 0 ,  N >. } : { 0 } --> { N }  <->  {
<. 0 ,  N >. } : ( 0 ... 0 ) --> { N } )
1110biimpi 120 . . . . . . . . 9  |-  ( {
<. 0 ,  N >. } : { 0 } --> { N }  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> { N } )
12 snssi 3812 . . . . . . . . 9  |-  ( N  e.  V  ->  { N }  C_  V )
13 fss 5485 . . . . . . . . 9  |-  ( ( { <. 0 ,  N >. } : ( 0 ... 0 ) --> { N }  /\  { N }  C_  V )  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V )
1411, 12, 13syl2an 289 . . . . . . . 8  |-  ( ( { <. 0 ,  N >. } : { 0 } --> { N }  /\  N  e.  V
)  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V )
1514ex 115 . . . . . . 7  |-  ( {
<. 0 ,  N >. } : { 0 } --> { N }  ->  ( N  e.  V  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V ) )
1615adantr 276 . . . . . 6  |-  ( ( { <. 0 ,  N >. } : { 0 } --> { N }  /\  ran  { <. 0 ,  N >. }  =  { N } )  ->  ( N  e.  V  ->  {
<. 0 ,  N >. } : ( 0 ... 0 ) --> V ) )
174, 6, 163syl 17 . . . . 5  |-  ( {
<. 0 ,  N >. } : { 0 } -1-1-onto-> { N }  ->  ( N  e.  V  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V ) )
183, 17mpcom 36 . . . 4  |-  ( N  e.  V  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V )
19 fvsng 5835 . . . . 5  |-  ( ( 0  e.  ZZ  /\  N  e.  V )  ->  ( { <. 0 ,  N >. } `  0
)  =  N )
201, 19mpan 424 . . . 4  |-  ( N  e.  V  ->  ( { <. 0 ,  N >. } `  0 )  =  N )
2118, 20jca 306 . . 3  |-  ( N  e.  V  ->  ( { <. 0 ,  N >. } : ( 0 ... 0 ) --> V  /\  ( { <. 0 ,  N >. } `
 0 )  =  N ) )
2221adantr 276 . 2  |-  ( ( N  e.  V  /\  P  =  { <. 0 ,  N >. } )  -> 
( { <. 0 ,  N >. } : ( 0 ... 0 ) --> V  /\  ( {
<. 0 ,  N >. } `  0 )  =  N ) )
23 feq1 5456 . . . 4  |-  ( P  =  { <. 0 ,  N >. }  ->  ( P : ( 0 ... 0 ) --> V  <->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V ) )
24 fveq1 5626 . . . . 5  |-  ( P  =  { <. 0 ,  N >. }  ->  ( P `  0 )  =  ( { <. 0 ,  N >. } `
 0 ) )
2524eqeq1d 2238 . . . 4  |-  ( P  =  { <. 0 ,  N >. }  ->  (
( P `  0
)  =  N  <->  ( { <. 0 ,  N >. } `
 0 )  =  N ) )
2623, 25anbi12d 473 . . 3  |-  ( P  =  { <. 0 ,  N >. }  ->  (
( P : ( 0 ... 0 ) --> V  /\  ( P `
 0 )  =  N )  <->  ( { <. 0 ,  N >. } : ( 0 ... 0 ) --> V  /\  ( { <. 0 ,  N >. } `  0 )  =  N ) ) )
2726adantl 277 . 2  |-  ( ( N  e.  V  /\  P  =  { <. 0 ,  N >. } )  -> 
( ( P :
( 0 ... 0
) --> V  /\  ( P `  0 )  =  N )  <->  ( { <. 0 ,  N >. } : ( 0 ... 0 ) --> V  /\  ( { <. 0 ,  N >. } `  0 )  =  N ) ) )
2822, 27mpbird 167 1  |-  ( ( N  e.  V  /\  P  =  { <. 0 ,  N >. } )  -> 
( P : ( 0 ... 0 ) --> V  /\  ( P `
 0 )  =  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    C_ wss 3197   {csn 3666   <.cop 3669   ran crn 4720   -->wf 5314   -onto->wfo 5316   -1-1-onto->wf1o 5317   ` cfv 5318  (class class class)co 6001   0cc0 7999   ZZcz 9446   ...cfz 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-apti 8114
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-neg 8320  df-z 9447  df-uz 9723  df-fz 10205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator