Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1fv | Unicode version |
Description: A function on a singleton. (Contributed by Alexander van der Vekens, 3-Dec-2017.) |
Ref | Expression |
---|---|
1fv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 9161 | . . . . . 6 | |
2 | f1osng 5452 | . . . . . 6 | |
3 | 1, 2 | mpan 421 | . . . . 5 |
4 | f1ofo 5418 | . . . . . 6 | |
5 | dffo2 5393 | . . . . . . 7 | |
6 | 5 | biimpi 119 | . . . . . 6 |
7 | fzsn 9950 | . . . . . . . . . . . . 13 | |
8 | 1, 7 | ax-mp 5 | . . . . . . . . . . . 12 |
9 | 8 | eqcomi 2161 | . . . . . . . . . . 11 |
10 | 9 | feq2i 5310 | . . . . . . . . . 10 |
11 | 10 | biimpi 119 | . . . . . . . . 9 |
12 | snssi 3700 | . . . . . . . . 9 | |
13 | fss 5328 | . . . . . . . . 9 | |
14 | 11, 12, 13 | syl2an 287 | . . . . . . . 8 |
15 | 14 | ex 114 | . . . . . . 7 |
16 | 15 | adantr 274 | . . . . . 6 |
17 | 4, 6, 16 | 3syl 17 | . . . . 5 |
18 | 3, 17 | mpcom 36 | . . . 4 |
19 | fvsng 5660 | . . . . 5 | |
20 | 1, 19 | mpan 421 | . . . 4 |
21 | 18, 20 | jca 304 | . . 3 |
22 | 21 | adantr 274 | . 2 |
23 | feq1 5299 | . . . 4 | |
24 | fveq1 5464 | . . . . 5 | |
25 | 24 | eqeq1d 2166 | . . . 4 |
26 | 23, 25 | anbi12d 465 | . . 3 |
27 | 26 | adantl 275 | . 2 |
28 | 22, 27 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 wss 3102 csn 3560 cop 3563 crn 4584 wf 5163 wfo 5165 wf1o 5166 cfv 5167 (class class class)co 5818 cc0 7715 cz 9150 cfz 9894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1re 7809 ax-addrcl 7812 ax-rnegex 7824 ax-pre-ltirr 7827 ax-pre-apti 7830 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-neg 8032 df-z 9151 df-uz 9423 df-fz 9895 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |