ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1fv Unicode version

Theorem 1fv 10125
Description: A function on a singleton. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
Assertion
Ref Expression
1fv  |-  ( ( N  e.  V  /\  P  =  { <. 0 ,  N >. } )  -> 
( P : ( 0 ... 0 ) --> V  /\  ( P `
 0 )  =  N ) )

Proof of Theorem 1fv
StepHypRef Expression
1 0z 9253 . . . . . 6  |-  0  e.  ZZ
2 f1osng 5498 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  N  e.  V )  ->  { <. 0 ,  N >. } : { 0 } -1-1-onto-> { N } )
31, 2mpan 424 . . . . 5  |-  ( N  e.  V  ->  { <. 0 ,  N >. } : { 0 } -1-1-onto-> { N } )
4 f1ofo 5464 . . . . . 6  |-  ( {
<. 0 ,  N >. } : { 0 } -1-1-onto-> { N }  ->  {
<. 0 ,  N >. } : { 0 } -onto-> { N } )
5 dffo2 5438 . . . . . . 7  |-  ( {
<. 0 ,  N >. } : { 0 } -onto-> { N }  <->  ( { <. 0 ,  N >. } : { 0 } --> { N }  /\  ran  { <. 0 ,  N >. }  =  { N } ) )
65biimpi 120 . . . . . 6  |-  ( {
<. 0 ,  N >. } : { 0 } -onto-> { N }  ->  ( { <. 0 ,  N >. } : { 0 } --> { N }  /\  ran  { <. 0 ,  N >. }  =  { N } ) )
7 fzsn 10052 . . . . . . . . . . . . 13  |-  ( 0  e.  ZZ  ->  (
0 ... 0 )  =  { 0 } )
81, 7ax-mp 5 . . . . . . . . . . . 12  |-  ( 0 ... 0 )  =  { 0 }
98eqcomi 2181 . . . . . . . . . . 11  |-  { 0 }  =  ( 0 ... 0 )
109feq2i 5355 . . . . . . . . . 10  |-  ( {
<. 0 ,  N >. } : { 0 } --> { N }  <->  {
<. 0 ,  N >. } : ( 0 ... 0 ) --> { N } )
1110biimpi 120 . . . . . . . . 9  |-  ( {
<. 0 ,  N >. } : { 0 } --> { N }  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> { N } )
12 snssi 3735 . . . . . . . . 9  |-  ( N  e.  V  ->  { N }  C_  V )
13 fss 5373 . . . . . . . . 9  |-  ( ( { <. 0 ,  N >. } : ( 0 ... 0 ) --> { N }  /\  { N }  C_  V )  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V )
1411, 12, 13syl2an 289 . . . . . . . 8  |-  ( ( { <. 0 ,  N >. } : { 0 } --> { N }  /\  N  e.  V
)  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V )
1514ex 115 . . . . . . 7  |-  ( {
<. 0 ,  N >. } : { 0 } --> { N }  ->  ( N  e.  V  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V ) )
1615adantr 276 . . . . . 6  |-  ( ( { <. 0 ,  N >. } : { 0 } --> { N }  /\  ran  { <. 0 ,  N >. }  =  { N } )  ->  ( N  e.  V  ->  {
<. 0 ,  N >. } : ( 0 ... 0 ) --> V ) )
174, 6, 163syl 17 . . . . 5  |-  ( {
<. 0 ,  N >. } : { 0 } -1-1-onto-> { N }  ->  ( N  e.  V  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V ) )
183, 17mpcom 36 . . . 4  |-  ( N  e.  V  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V )
19 fvsng 5708 . . . . 5  |-  ( ( 0  e.  ZZ  /\  N  e.  V )  ->  ( { <. 0 ,  N >. } `  0
)  =  N )
201, 19mpan 424 . . . 4  |-  ( N  e.  V  ->  ( { <. 0 ,  N >. } `  0 )  =  N )
2118, 20jca 306 . . 3  |-  ( N  e.  V  ->  ( { <. 0 ,  N >. } : ( 0 ... 0 ) --> V  /\  ( { <. 0 ,  N >. } `
 0 )  =  N ) )
2221adantr 276 . 2  |-  ( ( N  e.  V  /\  P  =  { <. 0 ,  N >. } )  -> 
( { <. 0 ,  N >. } : ( 0 ... 0 ) --> V  /\  ( {
<. 0 ,  N >. } `  0 )  =  N ) )
23 feq1 5344 . . . 4  |-  ( P  =  { <. 0 ,  N >. }  ->  ( P : ( 0 ... 0 ) --> V  <->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V ) )
24 fveq1 5510 . . . . 5  |-  ( P  =  { <. 0 ,  N >. }  ->  ( P `  0 )  =  ( { <. 0 ,  N >. } `
 0 ) )
2524eqeq1d 2186 . . . 4  |-  ( P  =  { <. 0 ,  N >. }  ->  (
( P `  0
)  =  N  <->  ( { <. 0 ,  N >. } `
 0 )  =  N ) )
2623, 25anbi12d 473 . . 3  |-  ( P  =  { <. 0 ,  N >. }  ->  (
( P : ( 0 ... 0 ) --> V  /\  ( P `
 0 )  =  N )  <->  ( { <. 0 ,  N >. } : ( 0 ... 0 ) --> V  /\  ( { <. 0 ,  N >. } `  0 )  =  N ) ) )
2726adantl 277 . 2  |-  ( ( N  e.  V  /\  P  =  { <. 0 ,  N >. } )  -> 
( ( P :
( 0 ... 0
) --> V  /\  ( P `  0 )  =  N )  <->  ( { <. 0 ,  N >. } : ( 0 ... 0 ) --> V  /\  ( { <. 0 ,  N >. } `  0 )  =  N ) ) )
2822, 27mpbird 167 1  |-  ( ( N  e.  V  /\  P  =  { <. 0 ,  N >. } )  -> 
( P : ( 0 ... 0 ) --> V  /\  ( P `
 0 )  =  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148    C_ wss 3129   {csn 3591   <.cop 3594   ran crn 4624   -->wf 5208   -onto->wfo 5210   -1-1-onto->wf1o 5211   ` cfv 5212  (class class class)co 5869   0cc0 7802   ZZcz 9242   ...cfz 9995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1re 7896  ax-addrcl 7899  ax-rnegex 7911  ax-pre-ltirr 7914  ax-pre-apti 7917
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-neg 8121  df-z 9243  df-uz 9518  df-fz 9996
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator