ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposf Unicode version

Theorem tposf 6418
Description: The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposf  |-  ( F : ( A  X.  B ) --> C  -> tpos  F : ( B  X.  A ) --> C )

Proof of Theorem tposf
StepHypRef Expression
1 relxp 4828 . . 3  |-  Rel  ( A  X.  B )
2 tposf2 6414 . . 3  |-  ( Rel  ( A  X.  B
)  ->  ( F : ( A  X.  B ) --> C  -> tpos  F : `' ( A  X.  B ) --> C ) )
31, 2ax-mp 5 . 2  |-  ( F : ( A  X.  B ) --> C  -> tpos  F : `' ( A  X.  B ) --> C )
4 cnvxp 5147 . . 3  |-  `' ( A  X.  B )  =  ( B  X.  A )
54feq2i 5467 . 2  |-  (tpos  F : `' ( A  X.  B ) --> C  <-> tpos  F : ( B  X.  A ) --> C )
63, 5sylib 122 1  |-  ( F : ( A  X.  B ) --> C  -> tpos  F : ( B  X.  A ) --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    X. cxp 4717   `'ccnv 4718   Rel wrel 4724   -->wf 5314  tpos ctpos 6390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326  df-tpos 6391
This theorem is referenced by:  tposfn  6419
  Copyright terms: Public domain W3C validator