Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > issmo | Unicode version |
Description: Conditions for which is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011.) |
Ref | Expression |
---|---|
issmo.1 | |
issmo.2 | |
issmo.3 | |
issmo.4 |
Ref | Expression |
---|---|
issmo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issmo.1 | . . 3 | |
2 | issmo.4 | . . . 4 | |
3 | 2 | feq2i 5341 | . . 3 |
4 | 1, 3 | mpbir 145 | . 2 |
5 | issmo.2 | . . 3 | |
6 | ordeq 4357 | . . . 4 | |
7 | 2, 6 | ax-mp 5 | . . 3 |
8 | 5, 7 | mpbir 145 | . 2 |
9 | 2 | eleq2i 2237 | . . . 4 |
10 | 2 | eleq2i 2237 | . . . 4 |
11 | issmo.3 | . . . 4 | |
12 | 9, 10, 11 | syl2anb 289 | . . 3 |
13 | 12 | rgen2a 2524 | . 2 |
14 | df-smo 6265 | . 2 | |
15 | 4, 8, 13, 14 | mpbir3an 1174 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 word 4347 con0 4348 cdm 4611 wf 5194 cfv 5198 wsmo 6264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-in 3127 df-ss 3134 df-uni 3797 df-tr 4088 df-iord 4351 df-fn 5201 df-f 5202 df-smo 6265 |
This theorem is referenced by: iordsmo 6276 |
Copyright terms: Public domain | W3C validator |