ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issmo Unicode version

Theorem issmo 6279
Description: Conditions for which  A is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011.)
Hypotheses
Ref Expression
issmo.1  |-  A : B
--> On
issmo.2  |-  Ord  B
issmo.3  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) )
issmo.4  |-  dom  A  =  B
Assertion
Ref Expression
issmo  |-  Smo  A
Distinct variable group:    x, y, A
Allowed substitution hints:    B( x, y)

Proof of Theorem issmo
StepHypRef Expression
1 issmo.1 . . 3  |-  A : B
--> On
2 issmo.4 . . . 4  |-  dom  A  =  B
32feq2i 5351 . . 3  |-  ( A : dom  A --> On  <->  A : B
--> On )
41, 3mpbir 146 . 2  |-  A : dom  A --> On
5 issmo.2 . . 3  |-  Ord  B
6 ordeq 4366 . . . 4  |-  ( dom 
A  =  B  -> 
( Ord  dom  A  <->  Ord  B ) )
72, 6ax-mp 5 . . 3  |-  ( Ord 
dom  A  <->  Ord  B )
85, 7mpbir 146 . 2  |-  Ord  dom  A
92eleq2i 2242 . . . 4  |-  ( x  e.  dom  A  <->  x  e.  B )
102eleq2i 2242 . . . 4  |-  ( y  e.  dom  A  <->  y  e.  B )
11 issmo.3 . . . 4  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) )
129, 10, 11syl2anb 291 . . 3  |-  ( ( x  e.  dom  A  /\  y  e.  dom  A )  ->  ( x  e.  y  ->  ( A `
 x )  e.  ( A `  y
) ) )
1312rgen2a 2529 . 2  |-  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) )
14 df-smo 6277 . 2  |-  ( Smo 
A  <->  ( A : dom  A --> On  /\  Ord  dom 
A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
154, 8, 13, 14mpbir3an 1179 1  |-  Smo  A
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   A.wral 2453   Ord word 4356   Oncon0 4357   dom cdm 4620   -->wf 5204   ` cfv 5208   Smo wsmo 6276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-in 3133  df-ss 3140  df-uni 3806  df-tr 4097  df-iord 4360  df-fn 5211  df-f 5212  df-smo 6277
This theorem is referenced by:  iordsmo  6288
  Copyright terms: Public domain W3C validator