ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issmo Unicode version

Theorem issmo 6341
Description: Conditions for which  A is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011.)
Hypotheses
Ref Expression
issmo.1  |-  A : B
--> On
issmo.2  |-  Ord  B
issmo.3  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) )
issmo.4  |-  dom  A  =  B
Assertion
Ref Expression
issmo  |-  Smo  A
Distinct variable group:    x, y, A
Allowed substitution hints:    B( x, y)

Proof of Theorem issmo
StepHypRef Expression
1 issmo.1 . . 3  |-  A : B
--> On
2 issmo.4 . . . 4  |-  dom  A  =  B
32feq2i 5397 . . 3  |-  ( A : dom  A --> On  <->  A : B
--> On )
41, 3mpbir 146 . 2  |-  A : dom  A --> On
5 issmo.2 . . 3  |-  Ord  B
6 ordeq 4403 . . . 4  |-  ( dom 
A  =  B  -> 
( Ord  dom  A  <->  Ord  B ) )
72, 6ax-mp 5 . . 3  |-  ( Ord 
dom  A  <->  Ord  B )
85, 7mpbir 146 . 2  |-  Ord  dom  A
92eleq2i 2260 . . . 4  |-  ( x  e.  dom  A  <->  x  e.  B )
102eleq2i 2260 . . . 4  |-  ( y  e.  dom  A  <->  y  e.  B )
11 issmo.3 . . . 4  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) )
129, 10, 11syl2anb 291 . . 3  |-  ( ( x  e.  dom  A  /\  y  e.  dom  A )  ->  ( x  e.  y  ->  ( A `
 x )  e.  ( A `  y
) ) )
1312rgen2a 2548 . 2  |-  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) )
14 df-smo 6339 . 2  |-  ( Smo 
A  <->  ( A : dom  A --> On  /\  Ord  dom 
A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
154, 8, 13, 14mpbir3an 1181 1  |-  Smo  A
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   Ord word 4393   Oncon0 4394   dom cdm 4659   -->wf 5250   ` cfv 5254   Smo wsmo 6338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-in 3159  df-ss 3166  df-uni 3836  df-tr 4128  df-iord 4397  df-fn 5257  df-f 5258  df-smo 6339
This theorem is referenced by:  iordsmo  6350
  Copyright terms: Public domain W3C validator