ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issmo Unicode version

Theorem issmo 6256
Description: Conditions for which  A is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011.)
Hypotheses
Ref Expression
issmo.1  |-  A : B
--> On
issmo.2  |-  Ord  B
issmo.3  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) )
issmo.4  |-  dom  A  =  B
Assertion
Ref Expression
issmo  |-  Smo  A
Distinct variable group:    x, y, A
Allowed substitution hints:    B( x, y)

Proof of Theorem issmo
StepHypRef Expression
1 issmo.1 . . 3  |-  A : B
--> On
2 issmo.4 . . . 4  |-  dom  A  =  B
32feq2i 5331 . . 3  |-  ( A : dom  A --> On  <->  A : B
--> On )
41, 3mpbir 145 . 2  |-  A : dom  A --> On
5 issmo.2 . . 3  |-  Ord  B
6 ordeq 4350 . . . 4  |-  ( dom 
A  =  B  -> 
( Ord  dom  A  <->  Ord  B ) )
72, 6ax-mp 5 . . 3  |-  ( Ord 
dom  A  <->  Ord  B )
85, 7mpbir 145 . 2  |-  Ord  dom  A
92eleq2i 2233 . . . 4  |-  ( x  e.  dom  A  <->  x  e.  B )
102eleq2i 2233 . . . 4  |-  ( y  e.  dom  A  <->  y  e.  B )
11 issmo.3 . . . 4  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) )
129, 10, 11syl2anb 289 . . 3  |-  ( ( x  e.  dom  A  /\  y  e.  dom  A )  ->  ( x  e.  y  ->  ( A `
 x )  e.  ( A `  y
) ) )
1312rgen2a 2520 . 2  |-  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) )
14 df-smo 6254 . 2  |-  ( Smo 
A  <->  ( A : dom  A --> On  /\  Ord  dom 
A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
154, 8, 13, 14mpbir3an 1169 1  |-  Smo  A
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444   Ord word 4340   Oncon0 4341   dom cdm 4604   -->wf 5184   ` cfv 5188   Smo wsmo 6253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-in 3122  df-ss 3129  df-uni 3790  df-tr 4081  df-iord 4344  df-fn 5191  df-f 5192  df-smo 6254
This theorem is referenced by:  iordsmo  6265
  Copyright terms: Public domain W3C validator