Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > issmo | Unicode version |
Description: Conditions for which is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011.) |
Ref | Expression |
---|---|
issmo.1 | |
issmo.2 | |
issmo.3 | |
issmo.4 |
Ref | Expression |
---|---|
issmo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issmo.1 | . . 3 | |
2 | issmo.4 | . . . 4 | |
3 | 2 | feq2i 5351 | . . 3 |
4 | 1, 3 | mpbir 146 | . 2 |
5 | issmo.2 | . . 3 | |
6 | ordeq 4366 | . . . 4 | |
7 | 2, 6 | ax-mp 5 | . . 3 |
8 | 5, 7 | mpbir 146 | . 2 |
9 | 2 | eleq2i 2242 | . . . 4 |
10 | 2 | eleq2i 2242 | . . . 4 |
11 | issmo.3 | . . . 4 | |
12 | 9, 10, 11 | syl2anb 291 | . . 3 |
13 | 12 | rgen2a 2529 | . 2 |
14 | df-smo 6277 | . 2 | |
15 | 4, 8, 13, 14 | mpbir3an 1179 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wcel 2146 wral 2453 word 4356 con0 4357 cdm 4620 wf 5204 cfv 5208 wsmo 6276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-in 3133 df-ss 3140 df-uni 3806 df-tr 4097 df-iord 4360 df-fn 5211 df-f 5212 df-smo 6277 |
This theorem is referenced by: iordsmo 6288 |
Copyright terms: Public domain | W3C validator |