ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq1i Unicode version

Theorem feq1i 5396
Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
feq1i.1  |-  F  =  G
Assertion
Ref Expression
feq1i  |-  ( F : A --> B  <->  G : A
--> B )

Proof of Theorem feq1i
StepHypRef Expression
1 feq1i.1 . 2  |-  F  =  G
2 feq1 5386 . 2  |-  ( F  =  G  ->  ( F : A --> B  <->  G : A
--> B ) )
31, 2ax-mp 5 1  |-  ( F : A --> B  <->  G : A
--> B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364   -->wf 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-fun 5256  df-fn 5257  df-f 5258
This theorem is referenced by:  ftpg  5742  frecfcllem  6457  frecsuclem  6459  omp1eomlem  7153  frecuzrdgrcl  10481  frecuzrdgrclt  10486  fxnn0nninf  10510  resqrexlemf  11151  algrf  12183  eulerthlemh  12369  eulerthlemth  12370  ennnfonelemh  12561  nninfdclemf  12606  mulgval  13192  znf1o  14139  limcmpted  14817  dvexp  14860  efcn  14903  subctctexmid  15491
  Copyright terms: Public domain W3C validator