ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq1i Unicode version

Theorem feq1i 5340
Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
feq1i.1  |-  F  =  G
Assertion
Ref Expression
feq1i  |-  ( F : A --> B  <->  G : A
--> B )

Proof of Theorem feq1i
StepHypRef Expression
1 feq1i.1 . 2  |-  F  =  G
2 feq1 5330 . 2  |-  ( F  =  G  ->  ( F : A --> B  <->  G : A
--> B ) )
31, 2ax-mp 5 1  |-  ( F : A --> B  <->  G : A
--> B )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1348   -->wf 5194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-fun 5200  df-fn 5201  df-f 5202
This theorem is referenced by:  ftpg  5680  frecfcllem  6383  frecsuclem  6385  omp1eomlem  7071  frecuzrdgrcl  10366  frecuzrdgrclt  10371  fxnn0nninf  10394  resqrexlemf  10971  algrf  11999  eulerthlemh  12185  eulerthlemth  12186  ennnfonelemh  12359  nninfdclemf  12404  limcmpted  13426  dvexp  13469  efcn  13483  subctctexmid  14034
  Copyright terms: Public domain W3C validator