| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq1i | Unicode version | ||
| Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq1i.1 |
|
| Ref | Expression |
|---|---|
| feq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1i.1 |
. 2
| |
| 2 | feq1 5455 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-fun 5319 df-fn 5320 df-f 5321 |
| This theorem is referenced by: ftpg 5822 frecfcllem 6548 frecsuclem 6550 omp1eomlem 7257 frecuzrdgrcl 10627 frecuzrdgrclt 10632 fxnn0nninf 10656 resqrexlemf 11513 algrf 12562 eulerthlemh 12748 eulerthlemth 12749 ennnfonelemh 12970 nninfdclemf 13015 mulgval 13654 znf1o 14609 limcmpted 15331 dvexp 15379 efcn 15436 subctctexmid 16325 |
| Copyright terms: Public domain | W3C validator |