Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > feq1i | Unicode version |
Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
feq1i.1 |
Ref | Expression |
---|---|
feq1i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq1i.1 | . 2 | |
2 | feq1 5320 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1343 wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-fun 5190 df-fn 5191 df-f 5192 |
This theorem is referenced by: ftpg 5669 frecfcllem 6372 frecsuclem 6374 omp1eomlem 7059 frecuzrdgrcl 10345 frecuzrdgrclt 10350 fxnn0nninf 10373 resqrexlemf 10949 algrf 11977 eulerthlemh 12163 eulerthlemth 12164 ennnfonelemh 12337 nninfdclemf 12382 limcmpted 13272 dvexp 13315 efcn 13329 subctctexmid 13881 |
Copyright terms: Public domain | W3C validator |