| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq1i | Unicode version | ||
| Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq1i.1 |
|
| Ref | Expression |
|---|---|
| feq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1i.1 |
. 2
| |
| 2 | feq1 5407 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-fun 5272 df-fn 5273 df-f 5274 |
| This theorem is referenced by: ftpg 5767 frecfcllem 6489 frecsuclem 6491 omp1eomlem 7195 frecuzrdgrcl 10553 frecuzrdgrclt 10558 fxnn0nninf 10582 resqrexlemf 11289 algrf 12338 eulerthlemh 12524 eulerthlemth 12525 ennnfonelemh 12746 nninfdclemf 12791 mulgval 13429 znf1o 14384 limcmpted 15106 dvexp 15154 efcn 15211 subctctexmid 15899 |
| Copyright terms: Public domain | W3C validator |