| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq1i | Unicode version | ||
| Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq1i.1 |
|
| Ref | Expression |
|---|---|
| feq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1i.1 |
. 2
| |
| 2 | feq1 5408 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-fun 5273 df-fn 5274 df-f 5275 |
| This theorem is referenced by: ftpg 5768 frecfcllem 6490 frecsuclem 6492 omp1eomlem 7196 frecuzrdgrcl 10555 frecuzrdgrclt 10560 fxnn0nninf 10584 resqrexlemf 11318 algrf 12367 eulerthlemh 12553 eulerthlemth 12554 ennnfonelemh 12775 nninfdclemf 12820 mulgval 13458 znf1o 14413 limcmpted 15135 dvexp 15183 efcn 15240 subctctexmid 15937 |
| Copyright terms: Public domain | W3C validator |