ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq1i Unicode version

Theorem feq1i 5417
Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
feq1i.1  |-  F  =  G
Assertion
Ref Expression
feq1i  |-  ( F : A --> B  <->  G : A
--> B )

Proof of Theorem feq1i
StepHypRef Expression
1 feq1i.1 . 2  |-  F  =  G
2 feq1 5407 . 2  |-  ( F  =  G  ->  ( F : A --> B  <->  G : A
--> B ) )
31, 2ax-mp 5 1  |-  ( F : A --> B  <->  G : A
--> B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1372   -->wf 5266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-fun 5272  df-fn 5273  df-f 5274
This theorem is referenced by:  ftpg  5767  frecfcllem  6489  frecsuclem  6491  omp1eomlem  7195  frecuzrdgrcl  10553  frecuzrdgrclt  10558  fxnn0nninf  10582  resqrexlemf  11260  algrf  12309  eulerthlemh  12495  eulerthlemth  12496  ennnfonelemh  12717  nninfdclemf  12762  mulgval  13400  znf1o  14355  limcmpted  15077  dvexp  15125  efcn  15182  subctctexmid  15870
  Copyright terms: Public domain W3C validator