| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq1i | Unicode version | ||
| Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq1i.1 |
|
| Ref | Expression |
|---|---|
| feq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1i.1 |
. 2
| |
| 2 | feq1 5423 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-br 4055 df-opab 4117 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-fun 5287 df-fn 5288 df-f 5289 |
| This theorem is referenced by: ftpg 5786 frecfcllem 6508 frecsuclem 6510 omp1eomlem 7217 frecuzrdgrcl 10587 frecuzrdgrclt 10592 fxnn0nninf 10616 resqrexlemf 11403 algrf 12452 eulerthlemh 12638 eulerthlemth 12639 ennnfonelemh 12860 nninfdclemf 12905 mulgval 13543 znf1o 14498 limcmpted 15220 dvexp 15268 efcn 15325 subctctexmid 16109 |
| Copyright terms: Public domain | W3C validator |