ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmpo Unicode version

Theorem fmpo 6201
Description: Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
Hypothesis
Ref Expression
fmpo.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
fmpo  |-  ( A. x  e.  A  A. y  e.  B  C  e.  D  <->  F : ( A  X.  B ) --> D )
Distinct variable groups:    x, A, y   
x, B, y    x, D, y
Allowed substitution hints:    C( x, y)    F( x, y)

Proof of Theorem fmpo
StepHypRef Expression
1 fmpo.1 . . 3  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
21fmpox 6200 . 2  |-  ( A. x  e.  A  A. y  e.  B  C  e.  D  <->  F : U_ x  e.  A  ( {
x }  X.  B
) --> D )
3 iunxpconst 4686 . . 3  |-  U_ x  e.  A  ( {
x }  X.  B
)  =  ( A  X.  B )
43feq2i 5359 . 2  |-  ( F : U_ x  e.  A  ( { x }  X.  B ) --> D  <-> 
F : ( A  X.  B ) --> D )
52, 4bitri 184 1  |-  ( A. x  e.  A  A. y  e.  B  C  e.  D  <->  F : ( A  X.  B ) --> D )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   {csn 3592   U_ciun 3886    X. cxp 4624   -->wf 5212    e. cmpo 5876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-fv 5224  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141
This theorem is referenced by:  fnmpo  6202  ovmpoelrn  6207  fmpoco  6216  eroprf  6627  mapxpen  6847  subf  8158  xaddf  9843  ixxf  9897  ioof  9970  fzf  10011  fzof  10143  gcdf  11972  eucalgf  12054  xpsff1o  12767  mgmplusf  12784  grpsubf  12948  lmodscaf  13398  txuni2  13726  txbasval  13737  cnmpt12  13757  cnmpt21  13761  cnmpt2t  13763  cnmpt22  13764  cnmptcom  13768  txswaphmeo  13791  blfvalps  13855  blfps  13879  blf  13880  bdmet  13972  xmetxp  13977
  Copyright terms: Public domain W3C validator