| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmpo | Unicode version | ||
| Description: Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
| Ref | Expression |
|---|---|
| fmpo.1 |
|
| Ref | Expression |
|---|---|
| fmpo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpo.1 |
. . 3
| |
| 2 | 1 | fmpox 6346 |
. 2
|
| 3 | iunxpconst 4779 |
. . 3
| |
| 4 | 3 | feq2i 5467 |
. 2
|
| 5 | 2, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 |
| This theorem is referenced by: fnmpo 6348 ovmpoelrn 6353 fmpoco 6362 eroprf 6775 mapxpen 7009 subf 8348 xaddf 10040 ixxf 10094 ioof 10167 fzf 10208 fzof 10340 gcdf 12493 eucalgf 12577 xpsff1o 13382 mgmplusf 13399 grpsubf 13612 lmodscaf 14274 txuni2 14930 txbasval 14941 cnmpt12 14961 cnmpt21 14965 cnmpt2t 14967 cnmpt22 14968 cnmptcom 14972 txswaphmeo 14995 blfvalps 15059 blfps 15083 blf 15084 bdmet 15176 xmetxp 15181 sgmf 15660 |
| Copyright terms: Public domain | W3C validator |