| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmpo | Unicode version | ||
| Description: Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
| Ref | Expression |
|---|---|
| fmpo.1 |
|
| Ref | Expression |
|---|---|
| fmpo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpo.1 |
. . 3
| |
| 2 | 1 | fmpox 6288 |
. 2
|
| 3 | iunxpconst 4736 |
. . 3
| |
| 4 | 3 | feq2i 5421 |
. 2
|
| 5 | 2, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 |
| This theorem is referenced by: fnmpo 6290 ovmpoelrn 6295 fmpoco 6304 eroprf 6717 mapxpen 6947 subf 8276 xaddf 9968 ixxf 10022 ioof 10095 fzf 10136 fzof 10268 gcdf 12326 eucalgf 12410 xpsff1o 13214 mgmplusf 13231 grpsubf 13444 lmodscaf 14105 txuni2 14761 txbasval 14772 cnmpt12 14792 cnmpt21 14796 cnmpt2t 14798 cnmpt22 14799 cnmptcom 14803 txswaphmeo 14826 blfvalps 14890 blfps 14914 blf 14915 bdmet 15007 xmetxp 15012 sgmf 15491 |
| Copyright terms: Public domain | W3C validator |