Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > smoiso | Unicode version |
Description: If is an isomorphism from an ordinal onto , which is a subset of the ordinals, then is a strictly monotonic function. Exercise 3 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 24-Nov-2011.) |
Ref | Expression |
---|---|
smoiso |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isof1o 5775 | . . . 4 | |
2 | f1of 5432 | . . . 4 | |
3 | 1, 2 | syl 14 | . . 3 |
4 | ffdm 5358 | . . . . . 6 | |
5 | 4 | simpld 111 | . . . . 5 |
6 | fss 5349 | . . . . 5 | |
7 | 5, 6 | sylan 281 | . . . 4 |
8 | 7 | 3adant2 1006 | . . 3 |
9 | 3, 8 | syl3an1 1261 | . 2 |
10 | fdm 5343 | . . . . . 6 | |
11 | 10 | eqcomd 2171 | . . . . 5 |
12 | ordeq 4350 | . . . . 5 | |
13 | 1, 2, 11, 12 | 4syl 18 | . . . 4 |
14 | 13 | biimpa 294 | . . 3 |
15 | 14 | 3adant3 1007 | . 2 |
16 | 10 | eleq2d 2236 | . . . . . . 7 |
17 | 10 | eleq2d 2236 | . . . . . . 7 |
18 | 16, 17 | anbi12d 465 | . . . . . 6 |
19 | 1, 2, 18 | 3syl 17 | . . . . 5 |
20 | epel 4270 | . . . . . . . . 9 | |
21 | isorel 5776 | . . . . . . . . 9 | |
22 | 20, 21 | bitr3id 193 | . . . . . . . 8 |
23 | ffn 5337 | . . . . . . . . . . 11 | |
24 | 3, 23 | syl 14 | . . . . . . . . . 10 |
25 | 24 | adantr 274 | . . . . . . . . 9 |
26 | simprr 522 | . . . . . . . . 9 | |
27 | funfvex 5503 | . . . . . . . . . . 11 | |
28 | 27 | funfni 5288 | . . . . . . . . . 10 |
29 | epelg 4268 | . . . . . . . . . 10 | |
30 | 28, 29 | syl 14 | . . . . . . . . 9 |
31 | 25, 26, 30 | syl2anc 409 | . . . . . . . 8 |
32 | 22, 31 | bitrd 187 | . . . . . . 7 |
33 | 32 | biimpd 143 | . . . . . 6 |
34 | 33 | ex 114 | . . . . 5 |
35 | 19, 34 | sylbid 149 | . . . 4 |
36 | 35 | ralrimivv 2547 | . . 3 |
37 | 36 | 3ad2ant1 1008 | . 2 |
38 | df-smo 6254 | . 2 | |
39 | 9, 15, 37, 38 | syl3anbrc 1171 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 wral 2444 cvv 2726 wss 3116 class class class wbr 3982 cep 4265 word 4340 con0 4341 cdm 4604 wfn 5183 wf 5184 wf1o 5187 cfv 5188 wiso 5189 wsmo 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-tr 4081 df-eprel 4267 df-id 4271 df-iord 4344 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-f1o 5195 df-fv 5196 df-isom 5197 df-smo 6254 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |