ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smoiso Unicode version

Theorem smoiso 6355
Description: If  F is an isomorphism from an ordinal  A onto  B, which is a subset of the ordinals, then 
F is a strictly monotonic function. Exercise 3 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 24-Nov-2011.)
Assertion
Ref Expression
smoiso  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  B  C_  On )  ->  Smo  F )

Proof of Theorem smoiso
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 5850 . . . 4  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  F : A -1-1-onto-> B
)
2 f1of 5500 . . . 4  |-  ( F : A -1-1-onto-> B  ->  F : A
--> B )
31, 2syl 14 . . 3  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  F : A --> B )
4 ffdm 5424 . . . . . 6  |-  ( F : A --> B  -> 
( F : dom  F --> B  /\  dom  F  C_  A ) )
54simpld 112 . . . . 5  |-  ( F : A --> B  ->  F : dom  F --> B )
6 fss 5415 . . . . 5  |-  ( ( F : dom  F --> B  /\  B  C_  On )  ->  F : dom  F --> On )
75, 6sylan 283 . . . 4  |-  ( ( F : A --> B  /\  B  C_  On )  ->  F : dom  F --> On )
873adant2 1018 . . 3  |-  ( ( F : A --> B  /\  Ord  A  /\  B  C_  On )  ->  F : dom  F --> On )
93, 8syl3an1 1282 . 2  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  B  C_  On )  ->  F : dom  F --> On )
10 fdm 5409 . . . . . 6  |-  ( F : A --> B  ->  dom  F  =  A )
1110eqcomd 2199 . . . . 5  |-  ( F : A --> B  ->  A  =  dom  F )
12 ordeq 4403 . . . . 5  |-  ( A  =  dom  F  -> 
( Ord  A  <->  Ord  dom  F
) )
131, 2, 11, 124syl 18 . . . 4  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  ( Ord  A  <->  Ord 
dom  F ) )
1413biimpa 296 . . 3  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A )  ->  Ord  dom  F )
15143adant3 1019 . 2  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  B  C_  On )  ->  Ord  dom  F )
1610eleq2d 2263 . . . . . . 7  |-  ( F : A --> B  -> 
( x  e.  dom  F  <-> 
x  e.  A ) )
1710eleq2d 2263 . . . . . . 7  |-  ( F : A --> B  -> 
( y  e.  dom  F  <-> 
y  e.  A ) )
1816, 17anbi12d 473 . . . . . 6  |-  ( F : A --> B  -> 
( ( x  e. 
dom  F  /\  y  e.  dom  F )  <->  ( x  e.  A  /\  y  e.  A ) ) )
191, 2, 183syl 17 . . . . 5  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  ( ( x  e.  dom  F  /\  y  e.  dom  F )  <-> 
( x  e.  A  /\  y  e.  A
) ) )
20 epel 4323 . . . . . . . . 9  |-  ( x  _E  y  <->  x  e.  y )
21 isorel 5851 . . . . . . . . 9  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( x  _E  y  <->  ( F `  x )  _E  ( F `  y ) ) )
2220, 21bitr3id 194 . . . . . . . 8  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( x  e.  y  <-> 
( F `  x
)  _E  ( F `
 y ) ) )
23 ffn 5403 . . . . . . . . . . 11  |-  ( F : A --> B  ->  F  Fn  A )
243, 23syl 14 . . . . . . . . . 10  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  F  Fn  A
)
2524adantr 276 . . . . . . . . 9  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  ( x  e.  A  /\  y  e.  A ) )  ->  F  Fn  A )
26 simprr 531 . . . . . . . . 9  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
y  e.  A )
27 funfvex 5571 . . . . . . . . . . 11  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( F `  y
)  e.  _V )
2827funfni 5354 . . . . . . . . . 10  |-  ( ( F  Fn  A  /\  y  e.  A )  ->  ( F `  y
)  e.  _V )
29 epelg 4321 . . . . . . . . . 10  |-  ( ( F `  y )  e.  _V  ->  (
( F `  x
)  _E  ( F `
 y )  <->  ( F `  x )  e.  ( F `  y ) ) )
3028, 29syl 14 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  y  e.  A )  ->  ( ( F `  x )  _E  ( F `  y )  <->  ( F `  x )  e.  ( F `  y ) ) )
3125, 26, 30syl2anc 411 . . . . . . . 8  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( ( F `  x )  _E  ( F `  y )  <->  ( F `  x )  e.  ( F `  y ) ) )
3222, 31bitrd 188 . . . . . . 7  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( x  e.  y  <-> 
( F `  x
)  e.  ( F `
 y ) ) )
3332biimpd 144 . . . . . 6  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( x  e.  y  ->  ( F `  x )  e.  ( F `  y ) ) )
3433ex 115 . . . . 5  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  ( ( x  e.  A  /\  y  e.  A )  ->  (
x  e.  y  -> 
( F `  x
)  e.  ( F `
 y ) ) ) )
3519, 34sylbid 150 . . . 4  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  ( ( x  e.  dom  F  /\  y  e.  dom  F )  ->  ( x  e.  y  ->  ( F `  x )  e.  ( F `  y ) ) ) )
3635ralrimivv 2575 . . 3  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  A. x  e.  dom  F A. y  e.  dom  F ( x  e.  y  ->  ( F `  x )  e.  ( F `  y ) ) )
37363ad2ant1 1020 . 2  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  B  C_  On )  ->  A. x  e.  dom  F A. y  e.  dom  F ( x  e.  y  ->  ( F `  x )  e.  ( F `  y ) ) )
38 df-smo 6339 . 2  |-  ( Smo 
F  <->  ( F : dom  F --> On  /\  Ord  dom 
F  /\  A. x  e.  dom  F A. y  e.  dom  F ( x  e.  y  ->  ( F `  x )  e.  ( F `  y
) ) ) )
399, 15, 37, 38syl3anbrc 1183 1  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  B  C_  On )  ->  Smo  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760    C_ wss 3153   class class class wbr 4029    _E cep 4318   Ord word 4393   Oncon0 4394   dom cdm 4659    Fn wfn 5249   -->wf 5250   -1-1-onto->wf1o 5253   ` cfv 5254    Isom wiso 5255   Smo wsmo 6338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-tr 4128  df-eprel 4320  df-id 4324  df-iord 4397  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-f1o 5261  df-fv 5262  df-isom 5263  df-smo 6339
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator