Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > smoiso | Unicode version |
Description: If is an isomorphism from an ordinal onto , which is a subset of the ordinals, then is a strictly monotonic function. Exercise 3 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 24-Nov-2011.) |
Ref | Expression |
---|---|
smoiso |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isof1o 5786 | . . . 4 | |
2 | f1of 5442 | . . . 4 | |
3 | 1, 2 | syl 14 | . . 3 |
4 | ffdm 5368 | . . . . . 6 | |
5 | 4 | simpld 111 | . . . . 5 |
6 | fss 5359 | . . . . 5 | |
7 | 5, 6 | sylan 281 | . . . 4 |
8 | 7 | 3adant2 1011 | . . 3 |
9 | 3, 8 | syl3an1 1266 | . 2 |
10 | fdm 5353 | . . . . . 6 | |
11 | 10 | eqcomd 2176 | . . . . 5 |
12 | ordeq 4357 | . . . . 5 | |
13 | 1, 2, 11, 12 | 4syl 18 | . . . 4 |
14 | 13 | biimpa 294 | . . 3 |
15 | 14 | 3adant3 1012 | . 2 |
16 | 10 | eleq2d 2240 | . . . . . . 7 |
17 | 10 | eleq2d 2240 | . . . . . . 7 |
18 | 16, 17 | anbi12d 470 | . . . . . 6 |
19 | 1, 2, 18 | 3syl 17 | . . . . 5 |
20 | epel 4277 | . . . . . . . . 9 | |
21 | isorel 5787 | . . . . . . . . 9 | |
22 | 20, 21 | bitr3id 193 | . . . . . . . 8 |
23 | ffn 5347 | . . . . . . . . . . 11 | |
24 | 3, 23 | syl 14 | . . . . . . . . . 10 |
25 | 24 | adantr 274 | . . . . . . . . 9 |
26 | simprr 527 | . . . . . . . . 9 | |
27 | funfvex 5513 | . . . . . . . . . . 11 | |
28 | 27 | funfni 5298 | . . . . . . . . . 10 |
29 | epelg 4275 | . . . . . . . . . 10 | |
30 | 28, 29 | syl 14 | . . . . . . . . 9 |
31 | 25, 26, 30 | syl2anc 409 | . . . . . . . 8 |
32 | 22, 31 | bitrd 187 | . . . . . . 7 |
33 | 32 | biimpd 143 | . . . . . 6 |
34 | 33 | ex 114 | . . . . 5 |
35 | 19, 34 | sylbid 149 | . . . 4 |
36 | 35 | ralrimivv 2551 | . . 3 |
37 | 36 | 3ad2ant1 1013 | . 2 |
38 | df-smo 6265 | . 2 | |
39 | 9, 15, 37, 38 | syl3anbrc 1176 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wral 2448 cvv 2730 wss 3121 class class class wbr 3989 cep 4272 word 4347 con0 4348 cdm 4611 wfn 5193 wf 5194 wf1o 5197 cfv 5198 wiso 5199 wsmo 6264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-tr 4088 df-eprel 4274 df-id 4278 df-iord 4351 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-f1o 5205 df-fv 5206 df-isom 5207 df-smo 6265 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |